
Improved Analysis and Trace Validation Using Metadata Snapshots

Ian F. Adams
UC Santa Cruz

Ethan L. Miller
UC Santa Cruz

Mark W. Storer
NetApp

Avani Wildani
UC Santa Cruz

Yangwook Kang
UC Santa Cruz

1 Introduction

One of the most fundamental storage system research
tasks is activity tracing. By understanding the behav-
ior of a running system we can accomplish a variety of
tasks ranging from debugging and system validation, to
proposing techniques to improve the performance of fu-
ture systems. Yet, before we can do an effective analysis
of a trace, we must first understand what activities are
and arenot captured in a trace. For example, in some
of our earlier works we found entire classes of activi-
ties were not captured but which we learned about them
via out of band means. It turned out these activities ac-
counted for anywhere between 50 and 90% of all data
read in the storage system and would have lead to very
different conclusions were we not aware of them [2]. In
those cases, we were lucky in that we had contact with
experts who understood both the system and the traces
they generated, but this cannot be relied upon in every
situation, particularly when dealing with large long-term
datasets. In a worst case scenario, a multi-year trace or
log may be rendered useless, or worse incorrectly an-
alyzed as the researchers may not be aware of missing
trace entries.

To help address this issue, we are exploring methods to
help identify what we call thecoverage of a trace. Cover-
age is a qualitative description of the activities captured,
or potentially skipped, in a given trace. Our initial idea
for identifying coverage is built around using filesystem
metdata snapshots (a common technique in storage sys-
tem analysis [3, 6]) in conjunction with file-level access
logs to provide a picture of what we expect the system
state to look like. We use these accesses to mutate the
metadata into an expected system state. The expected
state can then be compared with what it actually looks
like, and the differences between them analyzed to pro-

vide clues as to what is and is not being captured in a
given trace.

We next describe our methodology and early results.

2 Approach

Our prototype approach is inspired by metadata journal-
ing and log replay for deletions [4], where updates are
first stored in a journal and later applied to the full sys-
tem, which we briefly described in earlier work [1]. In
this approach, we treat a trace of activities like a journal
to aninitial metadata snapshot,Minit , using trace entries
to update the relevant metadata (e.g. timestamps). This
mapping process creates what we call anexpected snap-
shot at timeT , denotedMexpT . The expected snapshot
is what we estimate the current system state to be atT .
We then utilize a second snapshot, which we call there-
ality snapshot that was taken near or (ideally) at timeT ,
denotedMrltT . We then do a file by file comparison of
MexpT andMrltT to create ametadata diff of the system,
Mdi f f T . This diff contains all the files that did not match
up between the expected and reality snapshots and their
metadata. We then analyze the diff to provide hints as
to what we are missing in the logs that may be updating
metadata.

The first step in the analysis is to categorize each file
in the diff by the nature of its mismatch. The first type
of mismatch, which we call atype 1, is where a file is
found in the expected snapshot but is missing from the
reality snapshot. The second type, which we call atype
2, is the reverse of the type 1, where a file exists in the re-
ality snapshot but not the expected. Atype 3 mismatch is
where a file exists in both the reality and expected snap-
shots, but does not match on the expected metadata en-
tries. Within the expected snapshot, we may also have
what we call apartial entry. A partial occurs when we



attempt to map an entry to file that we did not expect (i.e.
the file was not in the initial snapshot) and then partially
populate the metadata in the expected snapshot.

Once the files in the diff have been categorized, we
analyze them based on both the observed metadata diffs
and their category. As a few examples:

• Large numbers of files in the type 1 category may
indicate missing delete entries.

• Files that are type 1, but otherwise have large
amounts of identical metadata to files that are type
2 may indicate missing file renames or moves.

• Large number of files in the type 2 category, along
with matches to partial entries, may indicate miss-
ing create entries.

Another technique we are investigating is the use of
density based clustering to automatically correlate type
3 mismatches with one another. For example, if a logger
fails, but the storage system continues operating, we will
trigger many type 3 diffs. We can then cluster the times-
tamps from those files to identify if there is a particular
timespan where the mismatches occurred. By calculating
the start and end timestamps we can estimate the duration
of a logger’s malfunctioning period.

The biggest shortfall of our overall approach is its re-
liance on metadata that only reflects the last change to
a file. This means there are many cases where miss-
ing trace entries may be masked. For example, if there
are 5 consecutive actions that modify the same metadata
timestamp, and the first 4 are missing, everything will
still look as predicted between the expected and reality
snapshots as the reality snapshot always reflects the lat-
est activities. As we discuss next, however, the efficacy
of our snapshot driven approach is highly dependent on
the workload as the rate of metadata change influences
the likelihood of the type of event we described above.

3 Current Status

We are currently creating a variety of synthetic work-
loads for testing the effectiveness of our approach un-
der a different conditions. We are using synthetic, rather
than real, workloads because we need to be able to con-
clusively identify ground truth for many varying work-
loads for our evaluation. For example, we hypothe-
size that ‘bursty’ repeat accesses may not pose a prob-
lem to identifying logger failures, but slower repeat ac-
cesses may create difficulties as they are more likely to
mask prior logger failures. For further evaluation we are
also going to experiment with dropping specific types

of entries from traces,e.g file renames, or permission
changes. This will help us gain a better understanding
of the strengths and shortcomings of our approach.

Early results for ’slow’ archival style workloads with
few repeat accesses are promising. We have been able
to identify logger failure intervals (discrete periods of
dropped trace entries) up to 90% of the time by using
the DBSCAN clustering algorithm [5].

References

[1] A DAMS, I., MADDEN, B., FRANK , J., STORER,
M. W., AND M ILLER , E. L. Usage behavior
of a large-scale scientific archive. InProceedings
of 2012 International Conference for High Perfor-
mance Computing, Networking, Storage and Analy-
sis (Nov. 2012).

[2] A DAMS, I. F., STORER, M. W., AND M ILLER ,
E. L. Analysis of workload behavior in scientific and
historical long-term data repositories.ACM Transac-
tions on Storage 8, 2 (2012).

[3] AGRAWAL , N., BOLOSKY, W. J., DOUCEUR, J. R.,
AND LORCH, J. R. A five-year study of file-system
metadata. InProceedings of the 5th USENIX Confer-
ence on File and Storage Technologies (FAST) (Feb.
2007), pp. 31–45.

[4] BURNS, R. C., AND LONG, D. D. E. System
and method for restoring a file system from backups
in the presence of deletions. United States Patent
6,938,056 B2, August 2005.

[5] ESTER, M., KRIEGEL, H.-P., SANDER, J., AND

XU, X. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In
Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining (1996).

[6] GIBSON, T., MILLER , E. L., AND LONG, D. D. E.
Long-term file activity and inter-reference patterns.
In Proceedings of the 24th International Confer-
ence for the Resource Management and Performance
and Performance Evaluation of Enterprise Comput-
ing Systems (CMG98) (Anaheim, CA, Dec. 1998),
CMG, pp. 976–987.


