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Abstract

Distributed file systems built for data analytics and en-
terprise storage systems have very different functionality
requirements. For this reason, enabling analytics on en-
terprise data commonly introduces a separate analytics
storage silo. This generates additional costs, and ineffi-
ciencies in data management, e.g., whenever data needs
to be archived, copied, or migrated across silos.

MixApart uses an integrated data caching and schedul-
ing solution to allow MapReduce computations to ana-
lyze data stored on enterprise storage systems. The front-
end caching layer enables the local storage performance
required by data analytics. The shared storage back-end
simplifies data management.

We evaluate MixApart using a 100-core Amazon EC2
cluster with micro-benchmarks and production workload
traces. Our evaluation shows that MixApart provides (i)
up to 28% faster performance than the traditional ingest-
then-compute workflows used in enterprise IT analyt-
ics, and (ii) comparable performance to an ideal Hadoop
setup without data ingest, at similar cluster sizes.

1 Introduction

We design a novel method for enabling distributed data
analytics to use data stored on enterprise storage. Dis-
tributed data analytics frameworks, such as MapRe-
duce [12, 19] and Dryad [22], are utilized by organiza-
tions to analyze increasing volumes of information. Ac-
tivities range from analyzing e-mails, log data, or trans-
action records, to executing clustering algorithms for
customer segmentation. Using such data flow frame-
works, data partitions are loaded from an underlying
commodity distributed file system, passed through a se-
ries of operators executed in parallel on the compute

nodes, and the results are written back to the file sys-
tem [19, 22]. The file system component of these frame-
works [13, 21] is a standalone storage system; the file
system stores the data on local server drives, with redun-
dancy (typically, 3-way replication) to provide fault tol-
erance and data availability.

While the benefits of these frameworks are well un-
derstood, it is not clear how to leverage them for per-
forming analysis of enterprise data. Enterprise data, e.g.,
corporate documents, user home directories, critical log
data, e-mails, need to be secured from tampering, pro-
tected from failures, and archived for long-term reten-
tion; high-value data demands the enterprise-level data
management features provided by enterprise storage.

Traditional analytics file systems [13], however, have
been designed for low-value data, i.e., data that can be
regenerated on a daily basis; low-value data do not need
enterprise-level data management. Consequently, these
file systems, while providing high throughput for paral-
lel computations, lack many of the management features
essential for the enterprise environment, e.g., support for
standard protocols (NFS), storage efficiency mechanisms
such as deduplication, strong data consistency, and data
protection mechanisms for active and inactive data [26].

These disparities create an environment where two
dedicated reliable storage systems (silos) are required for
running analytics on enterprise data: a feature-rich en-
terprise silo that manages the total enterprise data and a
high-throughput analytics silo storing enterprise data for
analytics. This setup leads to a substantial upfront in-
vestment as well as complex workflows to manage data
across different file systems. Enterprise analytics typi-
cally works as follows: (i) an application records data
into the enterprise silo, (ii) an extraction workflow reads
the data and ingests the data into the analytics silo, (iii)
an analytics program is executed and the results of the
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analytics are written into the analytics file system, (iv)
the results of the analytics are loaded back into the enter-
prise silo. The workflow repeats as new data arrives.

To address the above limitations, we design MixApart
to facilitate scalable distributed processing of datasets
stored in existing enterprise storage systems, thereby dis-
placing the dedicated analytics silo. MixApart replaces
the distributed file system component in current analytics
frameworks with an end-to-end storage solution, XDFS,
that consists of:

• a stateless analytics caching layer, built out of local
server disks, co-located with the compute nodes for
data analytics performance,

• a data transfer scheduler that schedules transfers of
data from consolidated enterprise storage into the disk
cache, just in time, in a controlled manner, and

• the enterprise shared storage system for data reliability
and data management.

The design space for MixApart includes two main
alternatives: (i) unified caching, by having the XDFS
cache interposed on the access path of both the analytics
and the enterprise workloads, (ii) dedicated caching, by
having the XDFS cache serve analytics workloads only.
Moreover, in terms of implementation, for each design
option, we can either leverage the existing HDFS [13]
codebase for developing our cache, or leverage existing
file caching solutions e.g., for NFS or AFS [8] file sys-
tems. With MixApart we explore the design of a dedi-
cated cache with an implementation based on the exist-
ing Hadoop/HDFS codebase. Our main reasons are pro-
totyping speed and fair benchmarking against Hadoop.

We deployed MixApart on a 100-core Amazon EC2
cluster, and evaluated its performance with micro-
benchmarks and production workload traces from Face-
book. In general, the results show that MixApart pro-
vides comparable performance to Hadoop, at similar
compute scales. In addition, MixApart improves stor-
age efficiency and simplifies data management. First,
the stateless cache design removes the redundancy re-
quirements in current analytics file systems, thus low-
ering storage demands. Moreover, with classic analytics
deployments, ingest is usually run periodically as a way
to synchronize two storage systems, independent of job
demands. In contrast, our integrated solution provides a
dynamic ingest of only the needed data. Second, MixA-
part eliminates cross-silo data workflows, by relying on
enterprise storage for data management. The data in the
cache is kept consistent with the associated data in shared
storage, thus enabling data freshness for analytics, trans-
parently, when the underlying enterprise data changes.

2 MixApart Use Cases

MixApart allows computations to analyze data stored on
enterprise storage systems, while using a caching layer
for performance. We describe scenarios where we expect
this decoupled design to provide high functional value.

Analyzing data on enterprise storage: Companies
can leverage their existing investments in enterprise stor-
age and enable analytics incrementally. There exist many
file-based data such as source-code repositories, e-mails,
and log files; these files are generated by traditional ap-
plications but currently require a workflow to ingest the
data into an analytics filesystem. MixApart allows a sin-
gle storage back-end to manage and service data for both
enterprise and analytics workloads. Data analytics, using
the same filesystem namespace, can analyze enterprise
data with no additional ingest workflows.

Cross-data center deployments: MixApart’s decou-
pled design also allows for independent scaling of com-
pute and storage layers. This gives the flexibility of plac-
ing the analytics compute tier on cloud infrastructures,
such as Amazon EC2 [3], while keeping the data on-
premise. In this scenario, upfront hardware purchases are
replaced by the pay-as-you-go cloud model. Cross-data
center deployments benefit from efforts such as AWS Di-
rect Connect [2] that enable high-bandwidth connections
between private data centers and clouds.

3 MapReduce Workload Analysis

Data analytics frameworks process data by splitting a
user-submitted job into several tasks that run in parallel.
In the input data processing phase, e.g., the Map phase,
tasks read data partitions from the underlying distributed
file system, compute the intermediate results by running
the computation specified in the task, and shuffle the out-
put to the next set of operators – e.g., the Reduce phase.
The bulk of the data processed is read in this initial phase.

Recent studies [10, 16] of production workloads de-
ployed at Facebook, Microsoft R©Bing, and Yahoo! make
three key observations: (i) there is high data reuse across
jobs, (ii) the input phases are, on average, CPU-intensive,
and (iii) the I/O demands of jobs are predictable. Based
on the above workload characteristics, we motivate our
MixApart design decisions. We then show that, with typ-
ical I/O demands and data reuse rates, MixApart can sus-
tain large compute cluster sizes, equivalent to those sup-
ported by current deployments using dedicated storage.
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3.1 High Data Reuse across Jobs
Production workloads exhibit high data reuse across jobs
with only 11%, 6%, and 7% of jobs from Facebook,
Bing, and Yahoo!, respectively, reading a file once [10].
Using the job traces collected, Ananthanarayanan et al.
estimate that in-memory cache hit rates of 60% are pos-
sible by allocating 32GB of memory on each machine,
with an optimal cache replacement policy [10].

MixApart employs a distributed cache layer built from
local server drives; this disk cache is two orders of mag-
nitude larger than an in-memory cache. For example,
Amazon EC2 [3] instances typically provide about 1TB
of local disk space for every 10GB of RAM. Hence, with
these very large on-disk caches even a simple LRU pol-
icy suffices to achieve near-optimal hit rates, rendering
cache thrashing irrelevant. Furthermore, we expect data
reuse to increase as computations begin to rely on itera-
tive processing – e.g., Mahout [14]. Interconnected jobs,
such as job pipelines, will naturally exhibit data reuse in
MixApart, as the current job input would be the output of
the previous job. These trends and observations indicate
that by caching data after the first access, MixApart can
significantly reduce the number of I/Os issued to shared
storage for subsequent accesses.

3.2 CPU-intensive Input Phases
In addition to high data reuse, data operations
such as compression/decompression, serialization/de-
serialization, task setup/cleanup, and the sorting of out-
puts increase the average time spent on the CPU [9]. Za-
haria et al. show, with 64 MB partition sizes, that the me-
dian map task duration is 19s for Facebook’s workloads,
and 26s for Yahoo!’s workloads [29]. Higher process-
ing times indicate that a task’s effective I/O rate is low,
thereby there is ample time to move data from the shared
storage to the distributed cache.

For instance, a task running for 20s to process a 64 MB
input partition implies a task I/O rate of 25 Mbps. A
storage server, with a 1 Gbps link, can sustain 40 such
map tasks concurrently, even when all data is read from
shared storage, with no loss in performance. The dis-
tributed cache layer further improves scalability. For ex-
ample, with a 70% cache hit rate and a task I/O rate of
25 Mbps, more than 130 map tasks can process data in
parallel from cache and shared storage.

3.3 Predictable I/O Demands
Average high data reuse and low task I/O rates confirm
the feasibility of MixApart. Individual job patterns that
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Figure 1: Compute Cluster Size. We show the number of paral-
lel map tasks sustained by the cache + shared storage architecture for
MapReduce analytics. Labels represent average map task durations
– e.g., 0.5s for I/O intensive tasks. We plot values for cache-storage
bandwidths of (a) 1Gbps, and (b) 10Gbps.

deviate from the norm, however, could potentially impact
scalability, by congesting shared storage when data reuse
is low and aggregate job I/O demands are high. Hence,
coordination is required to smooth out traffic and ensure
efficient storage bandwidth utilization at all times.

Previous studies observe that production MapReduce
workloads have very predictable task times [10, 16]. In
fact, the analysis of production traces for various Hadoop
clusters [16] shows that processing jobs can be classified
into less than 10 bins. In addition, tasks of a job have
similar durations [10]. These two observations, com-
bined with the fact that a task will read all data in its input
partition, allow MixApart to coordinate shared storage
traffic for individual jobs, and across multiple jobs.

3.4 Estimating Cluster Sizes Supported

We expand our analysis to estimate the average compute
cluster sizes that can be supported by MixApart based on
the workload characteristics introduced above, i.e., the
typical data reuse across jobs, the computation to I/O ra-
tio in the workload, and the storage bandwidth utiliza-
tion. We use a back-of-the-envelope calculation similar
to the one in Section 3.2 to derive the number of paral-
lel map tasks under different parameters. Figure 1 plots
the estimated cluster sizes (in number of map tasks). We
vary the data reuse ratios from 0 to 0.99, task durations
from 0.5s to 40s, and vary the storage bandwidth between
1 Gbps and 10 Gbps. The analysis shows that large ana-
lytics clusters can be sustained; for example, as shown in
the Figure, with a data reuse ratio of 0.8 and average map
task duration of 20s, MixApart can support 2000 parallel
tasks.

3
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Figure 2: MixApart Architecture. We show the components of the
compute and storage layers. We illustrate the execution flow of a job
with four compute tasks at job submission (1), analyzing four files. The
compute and XDFS managers exchange job-level information, e.g., I/O
rates and data locations (2). Data from files F1 and F3 for tasks T1 and
T3 is cached on DN1 and DN2, respectively, in the beginning. Tasks T1
and T3 are scheduled accordingly (4), and proceed in parallel with data
transfers F2 and F4 (3). T2 and T4 will be scheduled next.

4 MixApart Architecture

MixApart enables scalable and efficient analytics for data
stored on shared storage systems. Towards this, it uses
the disk space available on each compute node in the
analytics cluster as an on-disk caching tier for data on
shared storage. Figure 2 shows all the components of
the MixApart architecture. The architecture consists of
two layers: a distributed compute layer and a distributed
data storage layer (XDFS), along with the schedulers and
metadata managers associated with the two layers.

The operational goals of MixApart are twofold: (i)
preserve the scalability and performance benefit of
compute-data co-location, and (ii) ensure efficient uti-
lization of the compute nodes, cache and storage band-
width. Towards this, MixApart uses per-job task I/O
rates and the job scheduling policy to efficiently over-
lap computation with data fetches, whenever possible, by
utilizing two correlated components:

• Compute Scheduler: a module that schedules tasks ac-
cording to the XDFS cache contents and a job schedul-
ing policy e.g., FIFO.

• Data Transfer Scheduler: a module that transfers data
from shared storage to caches, as needed by compute
tasks, based on job I/O rate predictions.

Once a job is submitted to the compute layer, this layer
pre-processes the job to derive the job tasks, their data
requests, and data request I/O rates. This job information
is passed to the data transfer scheduler. Guided by the
I/O rate prediction, the data transfer scheduler schedules
data fetches from shared storage into one or more XDFS
cache nodes, just in time, on behalf of job tasks.

While following a given job scheduling policy, e.g.,
FIFO, the compute scheduler schedules tasks out of order
from its task queue, according to data availability in the
cache nodes. Specifically, within each job, the compute
scheduler prioritizes tasks with a higher fraction of data
already in the cache, or on their way to the cache.

The logic of the two schedulers is correlated; we em-
ploy two scheduler components in order to have separa-
tion of concerns, and the flexibility to plug in any pol-
icy, independently, at the compute and I/O layers, re-
spectively. For example, the compute scheduler can use
FIFO or Fair job scheduling, or real-time job deadlines.
On its end, the data transfer scheduler can work in con-
junction with shared storage policies for I/O scheduling
to achieve better utilization of the shared storage band-
width. Moreover, for cross-data center deployments of
MixApart, i.e., compute on-cloud, data on-premise, the
data transfer scheduler can provide end-to-end WAN and
shared storage bandwidth management.

Figure 2 shows an example of the integrated operation
of the two schedulers. We see that the compute scheduler
assigns tasks T1 and T3 to nodes DN1 and DN2, respec-
tively, where the data needed by each of the two tasks
is already cached. In parallel with these computations,
transfers occur for data expected to be needed next by
tasks T2 and T4; these tasks will be scheduled when their
data is in the cache.

5 MixApart Compute Layer

The compute layer is composed of a set of compute
nodes and our compute scheduler. Also a part of this
layer, a compute manager (see Figure 2) accepts jobs into
the system, and maintains job-level information, such as
task I/O rates, that our schedulers need. Furthermore, a
location handler associated with the compute scheduler
keeps track of locations for data blocks currently in the
cache and estimates of future data transfers.

Compute Manager: The MixApart compute man-
ager maintains job-level information, such as job sub-
mission time, job priority, job data blocks stored in the
cache, and the job-specific average map task I/O rate.
When an I/O rate estimate is not available on job sub-
mission, the job-level I/O rate can be estimated very fast
based on the monitored I/O rate of the first running job
map task. Given that tasks within a job are highly homo-
geneous [10], this is expected to be a good predictor of
I/O rates of all job tasks.

Compute Scheduler: Algorithm 1 illustrates the
compute scheduler logic. The compute nodes advertise
their resource availability by sending periodic heartbeats

4
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Algorithm 1 MixApart Data-Aware Compute Scheduler
1: if a heartbeat is received from node N then
2: if N has a free slot then
3: Sort JobQueue based on policy (FIFO, Fair)
4: for Job J in JobQueue do
5: if J has DataLocal(N) task T then
6: Launch T on node N
7: else if J has RackLocal(N) task T then
8: Launch T on node N
9: else if J has DataLocalInProgress(N) task T then

10: Launch T on node N
11: else if J has RackLocalInProgress(N) task T then
12: Launch T on node N
13: else if J has CacheLocal task T then
14: Launch T on node N
15: else if J has CacheLocalInProgress task T then
16: Launch T on node N
17: end if
18: end for
19: end if
20: end if

to the compute manager (step 1). Upon receiving a re-
source availability event, the compute scheduler sorts the
job scheduling queue based on the policy (3). For exam-
ple, for a FIFO policy, jobs are sorted based on arrival
time and a user-defined job priority; for a Fair policy,
jobs are sorted in increasing order of number of running
tasks [29]. The compute scheduler assigns a task from
the job at the head of the scheduling queue (4), in de-
creasing order of data partition locality (5-17), i.e., data-
local for tasks with input data cached on the respective
node, rack-local for tasks with input data cached on a
different node in the same rack as the current node, and
cache-local for tasks with input data anywhere in the
XDFS cache. If the data accessed by a task is in the
process of data transfer, the compute scheduler consid-
ers the future locality benefit and schedules accordingly
(9-12, 15-16).

To saturate the compute tier, the task scheduler crosses
job boundaries when assigning tasks, i.e., the task sched-
uler is work conserving. Specifically, if the tasks on be-
half of jobs currently expected to run do not saturate the
compute tier capacity due to lack of data in the cache,
the scheduler selects tasks from lower priority jobs for
which data is already in the cache.

6 XDFS Distributed Storage Layer

The XDFS on-disk cache layer contains a metadata man-
ager, a set of cache nodes, and a data transfer scheduler.

XDFS Metadata Manager: The XDFS metadata
manager implements both the distributed filesystem
functionality as well as MixApart functionality. Namely,

the manager implements group membership, failure de-
tection of cache nodes, and interfaces to query the
filesystem metadata. It also provides interfaces to query
and manage the cache contents.

The metadata manager stores the data location infor-
mation to be used by the compute tier for scheduling map
tasks. It interfaces with the compute scheduler to assign
tasks to nodes where a large fraction of the task’s asso-
ciated input data partition is cached. For every MapRe-
duce job submitted to the system, the compute sched-
uler queries the metadata node for input data partition
locations. For input partitions currently in the cache, the
XDFS metadata manager replies with associated cache
node locations. For input partitions not present in any
cache node, the data transfer scheduler chooses cache
nodes to transfer the data to, based on cache node utiliza-
tion, and coordinates the data transfers from shared stor-
age. The metadata manager notifies the compute sched-
uler of cache locations as soon as a transfer is initiated;
the data locations are used by the compute scheduler to
maximize compute-data locality.

XDFS Data Nodes: The XDFS data nodes store the
data needed by MapReduce tasks on local storage. The
data nodes copy data blocks into the cache from shared
storage, as instructed by the data transfer scheduler. We
use a default block granularity of 64 MB for large files;
data blocks are stored on the local filesystem, e.g., ext4.

XDFS Data Consistency: Data consistency in the
XDFS cache is maintained through notifications from
the shared storage server upon changes to enterprise
data. With the NFSv4 protocol, for example, this
is achieved through client delegations and server call-
backs [7]. Similarly, the CIFS protocol enables cache
consistency through opportunistic locks [4]. Metadata
consistency is maintained through directory delegations
and/or periodic checking of directory attributes.

The XDFS manager holds read delegations for all files
in the XDFS cache. The XDFS manager also main-
tains a list of files that represent inputs of active jobs.
For files that are not part of the input of active jobs, the
XDFS manager invalidates the corresponding file blocks
in the XDFS cache as file update notifications are re-
ceived from the enterprise storage. However, for files
that represent inputs of active jobs, file blocks are marked
as invalid after job completion. Invalid file blocks are re-
fetched using the usual data transfer path, upon newer
jobs analyzing the respective files.

Data Transfer Scheduler: The data transfer sched-
uler prefetches data across multiple jobs to utilize the
shared storage bandwidth effectively. It allows admin-
istrators to specify bounds on bandwidth consumed by

5
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Algorithm 2 XDFS Compute-Aware Data Transfer Scheduler
1: while AvailStorageBandwidth > 0 do
2: Sort JobQueue based on policy (FIFO, Fair)
3: J = head of JobQueue
4: Sort J’s BlockQueue based on block demand
5: B = head of BlockQueue
6: D = LocateAvailableDataNode()
7: Transfer block B at IORate(J)
8: AvailStorageBandwidth -= IORate(J)
9: end while

analytics workloads such that enterprise applications are
not impacted. I/O scheduling provides performance iso-
lation between data analytics and enterprise workloads at
storage; we use quanta-based scheduling as it minimizes
interference effects e.g., due to disk seeks, when different
workloads share the same storage subsystem [28].

As shown in Algorithm 2, the data transfer sched-
uler mimics the job scheduling logic to ensure that the
next expected job will have its input data available in the
cache (steps 2-3). For example, when the FIFO policy is
used at the compute tier, job arrival times and priorities
determine the data transfer order. Alternatively, the Fair
compute scheduler prioritizes jobs in increasing order of
number of running tasks. In this case, the data transfer
scheduler selects the next transfer from the job with the
lowest number of not-yet-analyzed cached data blocks
(including blocks under analysis). Transfer requests are
further sorted per-job, by global block demand, i.e., the
number of job tasks interested in a data block, across all
jobs (steps 4-5). Destination cache nodes are selected
based on available node capacity (6).

7 Prototype

We implemented the MixApart prototype within the
Hadoop 0.20.203.0 version. The data-aware compute
scheduler is a variant of the default task scheduler
in Hadoop; the compute scheduler uses the FIFO job
scheduling policy. We reused much of the HDFS code-
base and retrofitted it for our purposes. Specifically, the
NameNode, acting as XDFS metadata manager, loads
shared storage metadata, i.e., NFS metadata, at startup
time; data on enterprise storage is made visible through
a local mount point on the NameNode. Furthermore, we
modified HDFS to support cache blocks in addition to
the reliable, persistent blocks. The compute-aware data
transfer scheduler is implemented as a separate module
at the NameNode (metadata manager) level.

XDFS can be viewed as HDFS with a redundancy of
1, and with a smart layer that ingests data from NFS into
XDFS transparently and on-demand. HDFS, acting as

reliable storage, has additional code to handle data loss;
XDFS is stateless where a node failure simply results
in additional fetches from the shared storage. Being a
cache, we have modified XDFS to be aware of data trans-
fers and take advantage of compute times for prefetching.

8 Evaluation

We evaluate the performance of MixApart in compari-
son with a dedicated Hadoop setting. We also study the
impact MixApart has on enterprise workloads when run-
ning concurrently on shared storage.

8.1 MixApart vs. Hadoop

We evaluate MixApart on a 100-core cluster connected
to a NFS server, running on Amazon’s Elastic Compute
Cloud [3]; the XDFS caches access the shared storage
using local mount points. We run micro-benchmarks, as
well as production traces from a 3000-machine Hadoop
deployment at Facebook. We begin by comparing the
performance of MixApart to that of Hadoop with data
ingest into the HDFS cluster to show the benefits of over-
lapping computation with I/O prefetches in MixApart. In
subsequent experiments, we consider an ideal version of
Hadoop with no data ingest, i.e., all data already placed
in HDFS, for comparison against MixApart. Favoring
Hadoop in these experiments allows to investigate the
upper limit for MixApart’s scheduling for concurrency.

8.1.1 Testbed

We evaluate MixApart on Amazon EC2 using three types
of EC2 instances. We use 50 “standard-large” instances
to deploy the compute nodes and the XDFS data nodes;
each instance hosts a pair of compute and data nodes, and
is configured with 2 virtual cores, 7.5 GB RAM, 1 Gbps
network, and 850 GB of local ephemeral storage. Each
compute node provides 2 map slots and 1 reduce slot.
The compute manager and the XDFS metadata manager
use one “standard-extra-large” instance configured with
4 virtual cores, 15 GB of RAM, 1 Gbps network, and
1690 GB of local storage. The shared storage is pro-
vided by a “cluster-compute-extra-large” instance con-
figured with 23 GB RAM, 2 Intel R©Xeon R©X5570 quad-
core CPUs, 10 Gbps network, and 1690 GB of local stor-
age. We configure the shared storage server to store data
on 4 EBS (elastic block storage) volumes assembled in a
RAID-0 setting; the storage is exposed using NFS.

We use local instance storage for the XDFS cache;
each instance has 850 GB of local storage for a total of
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Figure 3: Individual Jobs. We show job durations for a MapReduce job running on a Wikipedia dataset. The CPU-intensive experiment
processes the compressed data; the I/O-intensive processes the uncompressed data. In (a) we run MixApart with a cold cache (MixApart-cold).
In (b), (c) we run MixApart with a warm cache. MixApart-DS has the data transfer scheduler disabled, i.e., parallel prefetching based on task I/O
rates is not performed.

42 TB in the disk cache. The same disks are used for
HDFS; HDFS is configured with 3-way replication. We
limit the NFS server bandwidth to 1 Gbps in our exper-
iments. This setting also mimics a production environ-
ment where enterprise workloads would still be able to
use the remaining 9 Gbps.

8.1.2 Estimated Capacity

Figure 4 presents the estimated storage capacity needed
for different Hadoop and MixApart configurations1. We
compare standard HDFS (3 copies) with configurations
that include enterprise storage either using double par-
ity RAID-6 (NAS+HDFS), or in a disaster-recovery setup
(DR-NAS+HDFS). The disaster-recovery setup mirrors
the entire storage system to an offsite copy. We estimate
the RAID overhead using the 12+2 (17% overhead) con-
figuration. We assume all data is copied from the enter-
prise storage system into HDFS in the NAS+HDFS and
DR-NAS+HDFS schemes; HDFS uses three copies even
when a copy is kept on enterprise storage. This results
in NAS+HDFS using 4.17 units of space for every unit of
data and DR-NAS+HDFS consumes 5.35 units. In con-
trast, the capacity needed by MixApart varies with the
fraction of active (cached) data. The MixApart configu-
rations (NAS+MIX and DR-NAS+MIX) also maintain the
entire dataset in enterprise storage and the active data is
assumed to have three copies in the caching layer. The
analysis shows that MixApart can be more efficient than
HDFS; using the NAS+MIX scheme, half of the dataset
can be analyzed while using less storage than HDFS.

1An analysis of the reliability and availability of the different con-
figurations is beyond the scope of this paper.
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8.1.3 Running Individual Jobs

We use a simple pageview count microbenchmark (de-
rived from the standard grep) that aggregates page
views for a given regular expression, from a Wikipedia
dataset [1]. We use 12 days of Wikipedia statistics as
the dataset; the data is 82 GB uncompressed (avg. file
size is 300 MB) and 23 GB compressed (avg. file size
is 85 MB). We run the job on both uncompressed and
compressed input. Tasks processing uncompressed data
are more I/O intensive than when input is compressed.
Namely, for uncompressed, the effective map task I/O
rates are roughly 50 Mbps. For compressed, I/O rates are
20 Mbps (due to higher CPU use). We denote runs on
uncompressed data as I/O-intensive, and runs on com-
pressed data as CPU-intensive.

We run each job in isolation, with various ratios of
data reuse. The reuse ratio is the fraction of job input
data in the XDFS cache at job submission time. HDFS
uses 246 GB of storage capacity for uncompressed data,
and 69 GB for compressed. MixApart uses 82 GB, and
23 GB for the cache, respectively, when the entire dataset
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Mix Jobs Test
1 A�

1 B1 data transfers for B1 while A1 running
2 A2 B2 just in time data transfers for B2
3 A3 B3 just in time data transfers for both jobs at dif-

ferent I/O rates
4 A�

4 B4 work conserving compute scheduling

Table 1: Job Mixes. We show a summary of the job mixes used to
evaluate MixApart. � marks a high priority job.

is analyzed. As expected, the cache storage needs for
MixApart are one third of HDFS capacity needed.

Figure 3 shows that: (i) overlapping the computa-
tion with data ingest improves performance, (ii) data
reuse allows MixApart to match the performance of
Hadoop+HDFS, and (iii) scheduling data transfers using
compute-awareness enables efficient bandwidth use.

Data Ingest: We compare the performance of MixA-
part with no data in the cache (denoted MixApart-cold) to
Hadoop (denoted Hadoop+ingest) – Figure 3(a). With
Hadoop+ingest, data is ingested into HDFS before a
job starts. By overlapping the computation and data
transfers, MixApart reduces durations by approximately
16% for the I/O-intensive job and by 28% for the CPU-
intensive job. Having shown that MixApart enables
faster computations by overlapping compute and data in-
gest, in the following experiments, we compare MixA-
part with an ideal version of Hadoop that has all its input
data in HDFS at job submission time.

Caching and Scheduling: Figures 3(b) and 3(c)
show job durations for various data reuse ratios. Dura-
tions decrease with higher reuse as a bulk of the data is
fetched from local disks, thereby avoiding the NFS bot-
tleneck. Specifically, MixApart with 0.8 reuse matches
the performance of Hadoop with all data in HDFS. The
compute-aware data transfer scheduler improves perfor-
mance by scheduling data transfers just-in-time.

Feasibility Analysis: Furthermore, the results are
consistent with the analysis presented in Section 3. For
I/O-intensive, the NFS server with 1 Gbps of bandwidth
can sustain 20 parallel tasks (map task I/O rates are
50 Mbps). With 0.8 data reuse ratio, 80 parallel tasks
can use local disks and 20 parallel tasks can use the NFS
server to achieve the same performance as Hadoop with
all data in HDFS. For CPU-intensive, lower I/O rates
allow MixApart to match stand-alone Hadoop perfor-
mance starting with 0.6 data reuse ratio.

8.1.4 Running Job Mixes

Next, we run mixes of two concurrent jobs to show the
benefits of MixApart compute and data transfer sched-
ulers. Table 1 summarizes the job mixes. To show the

efficacy of MixApart, we build mixes using variations of
the pageview job on different subsets of the Wikipedia
dataset. Figure 5 shows job durations for the different
mixes. We normalize job times to the time taken by
Hadoop to complete a job. We do not include the HDFS
data ingest time in these experiments. Despite fetching
data on-demand into the cache, MixApart compares well
to Hadoop.

Mix-1: Figure 5(a) shows durations when we submit
two jobs, A1 that has high data reuse and is I/O intensive,
and B1 that has low reuse and is CPU intensive. We mark
A1 to be high priority. Hence, A1 uses the entire compute
tier with its data served from the XDFS cache; the data
transfer scheduler issues transfer requests for B1’s input
data while A1 is running. As most data is transferred
proactively, job durations are similar. On MixApart, A1
takes 2% more time and B1 takes 3% more time.

Mix-2: This mix is similar to Mix-1 but the two jobs
have equal priorities. MixApart schedules A2 to run in
parallel with B2. Input data for A2 is entirely in the cache;
for B2, the data transfer scheduler coordinates just in time
transfers from shared storage – tasks are scheduled as
soon as data transfers are initiated. Figure 5(b) shows
similar results with both frameworks – A2 is 6% faster
with MixApart than Hadoop and B2 is 7% slower.

Mix-3: This mix – Figure 5(c), has jobs A3, that has
low data reuse and is I/O intensive, and B3, with low
reuse and CPU intensive. The jobs have equal priorities.
MixApart schedules tasks from both jobs to run in paral-
lel as data is being transferred from shared storage. The
data transfer scheduler maximizes the number of paral-
lel transfers, given the available storage bandwidth, using
per-job I/O rates. As storage bandwidth is the bottleneck,
A3 runs 11% slower in MixApart while the CPU inten-
sive B3 runs 6% faster in MixApart. Being CPU inten-
sive, the latency to transfer data to the cache is amortized
by the higher CPU cost of the computation.

Mix-4: In the first three mixes, the two jobs have simi-
lar run times with Hadoop and MixApart. For MixApart,
the data transfer scheduler ensures that tasks have their
input data in the cache as needed, by scheduling transfers
accordingly. In Mix-4 (shown in Figure 5(d)), we sub-
mit job A4 that has low data reuse and is CPU intensive,
and job B4 that has high data reuse and is I/O intensive.
We mark A4 to be high priority. A4 has about 100 map
tasks and it uses the entire compute tier with Hadoop;
B4 waits for A4 to finish. In contrast, with MixApart,
A4 is bottlenecked on prefetching from shared storage,
hence there are idle compute slots available; the work-
conserving compute scheduler assigns tasks of B4 to the
idle compute slots. A4 is 43% slower with MixApart than
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Figure 5: Job Mixes. We show job durations for two concurrent MapReduce jobs running on Wikipedia statistics data, under various scenarios.
Note that the HDFS data has been ingested prior to the experiments; adding the ingest time substantially increases the job time. Despite the
handicap, MixApart performs comparably to Hadoop while providing greater storage efficiency. Mix-1 (Figure 5(a)) runs job A1 with high data
reuse and job B1 with low data reuse; B1 waits for A1 to finish. Mix-2 (Figure 5(b)) runs A2 with high reuse and B2 with low reuse; A2 and B2 run
in parallel. Mix-3 (Fig 5(c)) runs A3 and B3 both with low data reuse; A3 and B3 run in parallel. Mix-4 (Figure 5(d)) runs A4 that has low data reuse
and B4 that has high reuse; A4 and B4 run sequentially with Hadoop and in parallel with MixApart (due to the work-conserving scheduler).
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Figure 6: Facebook Trace Characteristics. The data reuse ratio
of the trace changes over different time periods. We replay Hour-1,
Hour-5 and Hour-8 to cover a broad spectrum of trace characteristics.

with Hadoop, as we ignore the data ingest into HDFS. B4,
however, runs 37% faster.

8.1.5 Running Production Traces

We use the SWIM framework [17] to evaluate MixA-
part with traces of MapReduce jobs collected from pro-
duction environments; SWIM also provides a replay tool
to re-run the traces in our environment. The traces pre-
serve workload characteristics such as job input, inter-
mediate, and output data sizes, and job submission pat-
terns. SWIM also provides support for scaling down a
trace captured from a large cluster to a smaller cluster,
e.g., by scaling down job data sizes, while preserving the
job compute to I/O ratios. We use the Facebook trace
captured from a 3000-machine Hadoop cluster over a pe-
riod of 1.5 months in 2010, consisting of 24 intervals
of 1 hour job runs, sampled randomly from the original
longer trace [16]. The trace is dominated by small jobs,
with more than 90% of the jobs having a single Map task;
the remaining jobs’ input sizes range from 100s of GBs
to TBs. Previous studies have shown this to be an at-
tribute of most Hadoop environments [16].

Low Moderate High
MixApart 46.3s 38.3s 64.5s
Hadoop 41.1s 38.2s 63.9s

Table 2: Facebook Trace. We report average job durations (in sec-
onds) for the three Facebook trace segments. Only for the low data
reuse segment, MixApart is approximately 10% slower than Hadoop,
and similar otherwise.

Trace characteristics: Figure 6 shows that while the
data reuse ratio varies over time, there is a moderate
amount of reuse throughout the entire trace. We note
that the Facebook trace only contains input path informa-
tion but does not contain output path information, hence,
the reuse estimates are conservative. We choose three 1-
hour segments to evaluate MixApart: Hour-1 with 0.09
data reuse ratio identified as low reuse; Hour-5 with 0.48
data reuse ratio identified as moderate reuse; and Hour-8
with 0.83 data reuse ratio identified as high reuse. We
split each 1-hour trace into two sub-traces: the first 10
minutes are used to warm up the XDFS cache, and the
remaining 50 minutes for the actual run. We note that a
low percentage of the total data accessed in the actual run
is represented by data transferred during warm-up: 1.6%
for the low reuse trace, 5.9% for the moderate reuse trace,
and 0.8% for the high reuse trace. We further scale the
trace attributes, i.e., job sizes, to reflect the lower sized
100-core cluster that we use in our evaluation.

Results: Figures 7(a)-7(c) show the cumulative distri-
bution function of job durations for Hadoop and MixA-
part. Table 2 shows job duration averages for each of
the three trace segments. The results show that MixA-
part matches the performance of Hadoop for workloads
containing moderate and high data reuse. For the low
data reuse trace segment, 35% of the jobs run slower with
MixApart – Figure 7(a). On average, MixApart is about
10% slower for the low reuse trace.

9



142  11th USENIX Conference on File and Storage Technologies (FAST ’13)	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000

C
D

F

Time (s)

MixApart
Hadoop

(a) Job Times - Low Reuse

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000

C
D

F

Time (s)

MixApart
Hadoop

(b) Job Times - Moderate Reuse

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000

C
D

F

Time (s)

MixApart
Hadoop

(c) Job Times - High Reuse

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

# of running tasks

MixApart Map
Hadoop Map
MixApart Reduce
Hadoop Reduce

(d) Task Concurrency - Low Reuse

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

# of running tasks

MixApart Map
Hadoop Map
MixApart Reduce
Hadoop Reduce

(e) Task Concurrency - Moderate Reuse

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

# of running tasks

MixApart Map
Hadoop Map
MixApart Reduce
Hadoop Reduce

(f) Task Concurrency - High Reuse

Figure 7: Facebook Trace. We show job times and task concurrency for the three Facebook trace segments. Figures 7(a)-7(c) show the job
running times. Figures 7(d)-7(f) show the task concurrency of both map and reduce tasks. The results show that MixApart matches the performance
of Hadoop for the moderate and high data reuse trace segments.
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Figure 8: Compute and Data Transfer Concurrency. We show compute and shared storage statistics over time for the three Facebook trace
segments. Figures 8(a)-8(c) show the task concurrency over time, and implicitly, the job submission rate for each trace (workload intensity).
Figures 8(d)-8(f) show the storage bandwidth used at any given time (left y axis), the data transferred over time, as well as total data transferred
over the duration of the trace segment (right y axis). MixApart schedules 40-50 parallel transfers to saturate the 1Gbps shared storage bandwidth.
The compute tier schedules more than 50 tasks to run in parallel, due to proactive transfers and overall data reuse effects.
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Figures 7(d)-7(f) show the cumulative distribution
function of compute tier utilization in number of con-
current map and reduce tasks running at any given time.
In general, MixApart matches the number of tasks run
in parallel for both the Map and Reduce phases. The
only divergence occurs when the workload has low data
reuse: Hadoop achieves a higher compute tier utilization
by running 90+ map tasks for 5% of the time. As ex-
pected, the Reduce phase performance is not affected.

Detailed Analysis: We gain insights into the perfor-
mance of MixApart by studying the task concurrency at
the compute layer and the data transfer concurrency in
the cache layer. MixApart allows a fraction of the tasks
to run reusing cached data, while scheduling remain-
ing tasks to be started just in time as data is transferred
from shared storage. Figure 8 shows the compute layer
parallelism; we note that a majority of large jobs have
map task I/O rates in the range of 20-30 Mbps, thereby
enabling MixApart to schedule 40-50 parallel transfers
from shared storage. This allows the compute tier to
schedule more than 50 tasks to run in parallel, due to
proactive transfers and overall data reuse effects. Fig-
ures 8(a)-8(c), 7(d)-7(f) also illustrate per-trace job sub-
mission rate (workload intensity). The low data reuse
trace has moderate workload intensity. The moderate
reuse trace has low intensity, with less than 20 concur-
rent map tasks running for 80% of the time – Figure 7(e).
The high reuse trace exhibits high workload intensity, as
30% of the time there are more than 80 map tasks run-
ning with both MixApart and Hadoop – Figure 7(f).

We also study the data transfer statistics. Figures 8(d)-
8(f) show shared storage bandwidth utilization and total
data transferred from shared storage over time. The low
reuse trace transfers approximately 100 GB from shared
storage with most of the data transfers occurring after the
30 minute mark. With higher data reuse and lower work-
load intensity, the moderate reuse trace transfers about
35 GB from shared storage. The high reuse trace trans-
fers about 50 GB, due to a higher workload intensity.

Analysis of the Slowdown: We now focus on ana-
lyzing the causes of the difference between the perfor-
mance of MixApart and Hadoop on the low reuse trace,
where Hadoop schedules more concurrent map tasks
than MixApart for around 5% of the time. We focus on a
subset of jobs that create the bottleneck in MixApart.

Figure 9 plots job sizes (as number of tasks) and job
durations by job id for this subset of jobs from the low
reuse trace. The figure shows that, while most of these
jobs are small in size, some are larger class jobs, con-
taining 10s to 100s of tasks. The high degree of task
concurrency, coupled with higher than average I/O rates
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Figure 9: Low Data Reuse Trace. With many concurrent large I/O
intensive tasks, the storage server gets bottlenecked causing subsequent
tasks to be backlogged waiting for I/O requests to be scheduled.

for these tasks cause periods of saturation of the shared
storage bandwidth we allocate for MixApart. Periods
of limited concurrency at storage have some impact on
the available concurrency degree within the compute tier
as well. As there is low data reuse across jobs in this
trace, most existing tasks for both large and small jobs
are backlogged, waiting on I/O requests to be scheduled.
The upper part of Figure 9 shows these queueing effects
for both Hadoop and MixApart. However, the queueing
effects in Hadoop happen due to saturation of the com-
pute tier, while MixApart’s limitation is due to the I/O
scheduling policy coupled with low reuse rates.

8.2 Workload Isolation with MixApart
We study the impact of integrating data analytics and
enterprise workloads in a traditional data center setup,
focusing on the effects of sharing the storage system.
For this purpose, we capture and replay the storage-level
I/O requests of the Facebook low reuse trace; the low
reuse trace is the most I/O intensive out of the three
traces. As enterprise workloads, we generate I/O inten-
sive random and sequential workloads using the flexi-
ble I/O tester [5]. We also replay a segment from en-
terprise storage traces collected in a production environ-
ment at Microsoft [25]; specifically, we select a 2-hour
segment with high I/O intensity relative to the entire Mi-
crosoft trace set. The goal of this experiment was simply
to validate the isolation between MapReduce workloads
and enterprise workloads when running concurrently on
shared storage.

We use quanta-based I/O scheduling, as it has been
shown to guarantee performance isolation [28]. The
quanta scheduler gives each workload a time slice of ex-
clusive access to the underlying storage. We ran exper-
iments for various quantum values and time splits and
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Figure 10: Enterprise and Data Analytics Workloads on Shared
Storage. We show performance for enterprise workloads in I/O re-
quests per second (IOPS) normalized to performance achieved with full
storage access. Concurrently running enterprise and analytics work-
loads in MixApart causes little performance degradation in the nor-
mal case (MSR). With high I/O intensive enterprise workloads, quanta
scheduling ensures performance isolation.

the results were similar. Figure 10 shows the results for
a 500 ms quantum and a 90/10 time split for enterprise
and analytics workloads, respectively. The random and
sequential I/O intensive workloads validate the perfor-
mance isolation enabled by quanta scheduling. The Mi-
crosoft traces are less I/O intensive than the random and
sequential microbenchmarks. Hence, running analytics
workloads concurrently with the regular MSR storage
workload incurs negligible effects on these (MSR) enter-
prise workloads. We further replay the Microsoft trace
segment at artificially generated higher speeds (MSR 6x
and MSR 10x) to increase I/O intensity and show the
performance impact of concurrently running data ana-
lytics in stress test enterprise situations. As with the
random and sequential microbenchmarks, we see that
quanta scheduling ensures performance isolation.

8.3 Overhead of Cache Invalidations

Updates to data in shared storage trigger cache invalida-
tions, potentially reducing the effective cache hit rate for
MixApart. The current system is architected for analyz-
ing unstructured data such as logs, and/or corporate doc-
uments, produced by append-only enterprise workloads,
and/or workloads with low rates of data overwrites. The
append-only workloads are similar to workloads at Face-
book, i.e., streams of user data, and are therefore backed
by the Facebook trace evaluation. Moreover, recent stud-
ies of network file system workloads [24, 18] corroborate
that overwrite rates are low in corporate environments,
relative to the total enterprise data. While we do not
evaluate the performance effects of cache invalidations,
these effects are expected to be negligible for the types
of workloads the current MixApart design targets.

8.4 Summary of Results
The results show that (i) our job trace selection and clus-
ter sizing was appropriate for Hadoop to effectively use
the compute tier with all data in HDFS, while allowing us
to explore some variety in workload behavior at the same
time, (ii) MixApart benefits from high data reuse and
from jobs being compute intensive, on average, matching
the performance of ideal Hadoop in almost all production
scenarios studied, and (iii) the compute parallelism and
performance achievable with MixApart is limited only
when the I/O demands of all jobs saturate the shared stor-
age bandwidth, and there is low data reuse across jobs.

9 Related Work

As the MapReduce paradigm becomes widely adopted
within enterprise environments, the drawbacks of a
purpose-built filesystem become glaring. Recent work
has looked at techniques to interface Hadoop with en-
terprise filesystems [11, 27] as well as studied methods
to provide enterprise storage features on top of existing
MapReduce frameworks [6, 20]. Others have studied
the benefits of in-memory caching for MapReduce work-
loads [10, 15, 30].

MixApart extends and complements existing work.
We leverage the insights of Ananthanarayanan et al. [10]
to argue for a disk caching layer. Moreover, we en-
able analytics on enterprise filesystems by leveraging a
caching layer for acceleration without any changes to ex-
isting networked storage systems, while others [11, 27]
modify enterprise filesystems (i.e., PVFS/GPFS) to sup-
port analytics workloads. In this sense, we believe that
MixApart allows enterprise customers to leverage the in-
frastructure that has been deployed without additional
hardware costs or downtime to existing storage systems.
Modified Cluster Storage Architectures: A body
of recent efforts analyzed the aspects of incorporating
Hadoop with existing storage systems [11, 27]. These
works layer Hadoop’s MapReduce compute tier on top of
clustered filesystems – e.g., by enhancing GPFS/PVFS
with large blocks and data location awareness capabili-
ties. In contrast, with MixApart, we enable scalable, de-
coupled data analytics primarily for data stored in enter-
prise storage systems, through caching and prefetching.
Enhanced MapReduce Distributions: Enhanced dis-
tributions of Hadoop aim at incorporating enterprise file
system features into HDFS. For instance, the Hadoop
distribution from MapR Technologies [6] offers NFS ac-
cess to the underlying data. In the same vein, erasure
coding within HDFS has been explored recently [20].
While these attempts provide basic features needed for
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enterprise environments, more time and effort are re-
quired to enhance commodity distributed file systems to
the level of their enterprise counterparts.
Caching for Analytics: In-memory caching for data an-
alytics workloads has been shown to improve perfor-
mance, in general, due to data reuse [10, 15, 30]. We
leverage and extend this observation to showcase the fea-
sibility of MixApart; we improve the caching efficiency
by using disk-based caches. By and large, works that op-
timize performance for specific job classes [10, 15, 30],
can be layered on top of MixApart, just as they would be
with frameworks such as Hadoop.
Location-aware Scheduling: The MixApart data-aware
compute scheduler builds on previous work for location-
aware compute scheduling [12, 23, 29]. In particular, we
adapt the Hadoop task scheduler to be work-conserving,
and to work in concert with the XDFS data transfer
scheduler, by assigning tasks as soon as a transfer of data
from shared storage is initiated.

10 Conclusions and Future Work

MixApart is a flexible data analytics framework that al-
lows enterprise IT to meet its data management needs
while enabling decoupled scale-out of the analytics com-
pute cluster. MixApart achieves these goals by using an
on-disk caching layer at the compute nodes and intelli-
gent schedulers to utilize the shared storage efficiently.

We show that MixApart can reduce job durations
by up to 28% compared to the traditional ingest-then-
compute method. When the ingest phase is ignored for
HDFS, MixApart closely matches the performance of
Hadoop at similar compute scales. At the same time,
MixApart uses a stateless disk cache without data repli-
cation within the compute cluster. We expect that the
separation of concerns in this simple, decoupled design
allows the most functional value in the following two re-
alistic cases. First, MixApart can be used to support the
customer option to leverage clouds for analytics, while
maintaining the data within their private data center. Sec-
ond, MixApart can be used to enable selective and trans-
parent cache block refresh when the underlying enter-
prise data changes; this is an elegant solution for main-
taining update consistency for analytics without modify-
ing application semantics or manual interventions.
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