
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 183

Improving Restore Speed for Backup Systems that Use Inline
Chunk-Based Deduplication

Mark Lillibridge†, Kave Eshghi†, and Deepavali Bhagwat�
†HP Labs �HP Storage

first.last@hp.com

Abstract

Slow restoration due to chunk fragmentation is a seri-
ous problem facing inline chunk-based data deduplica-
tion systems: restore speeds for the most recent backup
can drop orders of magnitude over the lifetime of a sys-
tem. We study three techniques—increasing cache size,
container capping, and using a forward assembly area—
for alleviating this problem. Container capping is an
ingest-time operation that reduces chunk fragmentation
at the cost of forfeiting some deduplication, while using a
forward assembly area is a new restore-time caching and
prefetching technique that exploits the perfect knowl-
edge of future chunk accesses available when restoring
a backup to reduce the amount of RAM required for a
given level of caching at restore time.

We show that using a larger cache per stream—we
see continuing benefits even up to 8 GB—can produce
up to a 5–16X improvement, that giving up as little as
8% deduplication with capping can yield a 2–6X im-
provement, and that using a forward assembly area is
strictly superior to LRU, able to yield a 2–4X improve-
ment while holding the RAM budget constant.

1 Introduction

Inline chunk-based deduplication is a well established
technique for removing data redundancy [15, 19]. It
is used in commercial disk-to-disk (D2D) backup sys-
tems to greatly reduce the amount of data that must be
stored [12, 27]. It works by dividing up incoming data
into small (≈ 4–8 KB) pieces, called chunks, and storing
only chunks that do not already have an identical copy in
the store. For chunks that already have an identical stored
copy, only a reference to the existing copy is stored. Be-
cause daily backups are highly redundant, this removal
of duplicate data can produce great savings. Savings of
10–30X are typical [3].

Unfortunately, restore speed in such systems often suf-
fers due to chunk fragmentation, especially after many
backups have been ingested. Chunk fragmentation, like
disk fragmentation, results when the chunks of a backup
become scattered all over rather than arranged in a nice
compact continuous sequence. Because of modern disks’
relatively poor random I/O performance compared to se-
quential I/O, fragmentation greatly hurts restore perfor-
mance.

Chunk fragmentation primarily arises in these systems
from the sharing of chunks between backups. When
a backup is ingested, its new chunks are laid out in
the order they arrive but its old chunks are left where
they were originally deposited. Put another way, stored
chunks are grouped by the first backup they appeared in
so the chunks of the latest backup can be in many places.
Because chunks do not arrive ordered by age, restora-
tion must jump back and forth between different chunk
groups as data of different ages is encountered.

Unlike disk fragmentation, which can be remedied
by a simple re-arranging of blocks, chunk fragmenta-
tion is more problematic. Due to chunk sharing be-
tween backups, it is not possible in general to find
a chunk layout that reduces the fragmentation of ev-
ery or even most backups. Rearranging chunks can
also be very expensive: for example, if we attempt to
keep all the chunks of the latest backup together (i.e.,
move old chunks next to new chunks), then we need for
each backup ingested to move data proportional to the
pre-deduplicated backup size rather than the potentially
orders-of-magnitude smaller deduplicated backup size.

Chunk fragmentation and hence restore performance
gets worse as time goes by, and affects the recent backups
the most. This slow down can be quite substantial: for
our data sets, we see slowdowns of 4X over three months
for one and 11X over two years for the other.

In this paper, in addition to investigating how frag-
mentation and restore speed behave over time and under
different cache sizes, we investigate two approaches to

184 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

improving restore speed in these deduplication systems:
First, we consider capping where we trade off dedupli-
cation for reduced chunk fragmentation by deduplicat-
ing each backup section against only a limited number
of places. This limits how many places need be accessed
per backup MB, which speeds up restore at the cost of
missing some deduplication that could have been pro-
vided by other places. Second, we exploit the fact that
we have advance knowledge of the accesses that will be
required to restore the backup courtesy of the backup
chunk-reference list (recipe) to create a new, more effi-
cient caching and prefetching method for restoring dedu-
plicated data, the forward assembly area method. Nei-
ther of these approaches require rearranging chunks.

The rest of this paper is organized as follows: in the
next section, we describe the problem of slow restoration
due to chunk fragmentation in more detail. In Section 3,
we describe our approach to handling this problem. In
Section 4, we report on various simulation experiments
with real and synthetic data on the effectiveness of our
approach. Finally, we describe future work in Section 5,
related work in Section 6, and our conclusions in Sec-
tion 7.

2 The Problem

We are concerned here with stream-based data backup
using deduplication, where the backup application turns
the source data into a stream that is sent to the backup ap-
pliance for storage. We are not concerned with the details
of the mapping from the source data to the stream, so we
talk about the storage and retrieval of backup (streams),
where a backup is typically many GBs. Since we are
dealing with chunk-based deduplication, we consider a
backup to be a sequence of chunks generated by a chunk-
ing algorithm.

Typically, these systems store chunks in a number of
files called chunk containers. The standard method used
for storing new incoming chunks [12, 27] is as follows:
at any given time, there is one container per incoming
stream, called its open container, which is used for stor-
ing new chunks from that stream. When a new chunk
arrives, it is simply added to the end of the relevant open
container. When the size of an open container reaches
a certain threshold, typically 4 MB, it is closed and re-
placed with a new empty container. Open containers
are also closed when the end of their associated stream
is reached. The new chunks of each backup are thus
grouped into a series of new 4 MB container files.

The baseline restore algorithm is to scan down the
backup’s recipe—one or more files containing a list of
references to the backup’s chunks in the order they make
up the backup—retrieving each chunk in order one at a
time by paging in the entire chunk container containing

that chunk. Although reading entire chunk containers
seems wasteful at first, it makes sense for two reasons:
First, with modern RAID systems, so much data can be
read in the time it takes to do a single seek that it is faster
to read unnecessary data than seek past it. For example,
a RAID 6 group with 10 data drives @ 100 MB/s each
can read an entire 4 MB container in 4 ms whereas a seek
requires 10 ms.

Second, recipe references in these systems do not con-
tain chunk offsets directly but rather indirect through
indexes usually located at the start of each container.
This indirection speeds up container compaction when
backups are deleted because there is no need to update
recipes, which can consume a substantial fraction of stor-
age with high deduplication factors. Given that we have
to seek to the start of the container anyway to read its
index, it will be faster to just keep reading rather than
seeking again to the first chunk we want. Because we
will not generally be able to consult the index until the
read finishes, stopping before the end of the container
risks requiring another expensive seek. Under these con-
ditions, it is more efficient to blindly read the entire con-
tainer even when we need only one chunk.

This algorithm relies on there being sufficient caching
of containers—either by the operating system or an
application-specific cache—in order to achieve good per-
formance. Because we wish to quantify the effect of
cache size and caching algorithm on restore perfor-
mance, we simulate this caching explicitly.

Our default cache is a simple n-slot LRU container
cache, which can hold up to n chunk containers at a time
and takes n×container size space. We simulate restoring
only one stream at a time using this cache; real systems,
of course, need to be able to handle many streams at a
time—some current systems can do over 100 simultane-
ous streams—and thus would need proportionately more
cache space. Real systems have many demands on their
limited RAM including being able to ingest and restore
simultaneously and so cache efficiency is of great con-
cern.

The consequences of all this can be seen in Figure 1,
which shows the mean number of containers read per MB
of backup restored for the backups of the data set 2year-
cycle30 (described in Section 4.2) for 4 LRU cache sizes.
Containers read per MB restored is a restore-relevant
way of measuring a backup’s fragmentation at a given
scale (aka, cache size). As can be seen, even allowing
a great deal of cache, each succeeding backup is more
fragmented, requiring more containers to be read per MB
of data restored. Because we do not rearrange chunks, a
backup’s fragmentation remains constant as more back-
ups are added. More information on this and related ex-
periments can be found in Section 4.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 185

0

2

4

6

8

10

12

1 51 101 151 201 251 301 351 401 451

co
nt

ai
ne

rs
 re

ad
 p

er
 M

B
re

st
or

ed

backup number

128 MB
256 MB
512 MB
 1 GB

Figure 1: Fragmentation over time for 2year-cycle30
data set for 4 different LRU cache sizes. Shown is a sim-
ple 20 backup moving average; no capping was used.

Because reading chunk containers is by far the dom-
inant restore cost, this means that restore speed on any
of these systems is inversely proportional to this mea-
sure of fragmentation; here fragmentation increases 18X
when using a 1 GB cache (11X using a 128 MB cache)
over the course of two years resulting in restore speed
dropping by similar factor. This large slowdown of re-
store performance over time due to chunk fragmentation
is the problem we are concerned with in this paper.

By making assumptions about a system’s I/O perfor-
mance, we can estimate real-world restore speed from
these numbers. If we assume reading a container takes
24 ms (2 seeks, 1 for inode and 1 for start of continuous
sequential data, @ 10 ms each plus 4 ms to read 4 MB
@ 1000 MB/s due to 10 data drives in a RAID 6 group),
then the final speeds are 1/(24 ms × 5.0/MB) = 8 MB/s
with a 1 GB cache and 3 MB/s with a 128 MB cache.
Even with better hardware, these fragmentation levels are
unlikely to yield acceptable speeds for restoration in an
emergency.

3 Our Approach

In this section, we describe our approach to measuring
restore speed and the new two techniques we investigated
for improving restore performance, capping and the for-
ward assembly area method.

3.1 Measuring restore speed

We introduce a new restore speed proxy, speed fac-
tor, defined as the inverse of our fragmentation mea-
sure, namely 1/mean containers read per MB of data re-
stored. This measure ignores restore speed variance due
to filesystem physical fragmentation, faster seeks when
files are closer together, and the like in favor of concen-
trating on the dominant cost, container reading.

If container size is kept constant (most of this paper),
then relative differences in speed factor observed on one
system, say due to caching changes, should be similar on
another system even though their raw I/O performance
(seek and sequential read speeds) may be quite different.
This breaks down if container size is allowed to vary,
however (see Section 4.7).

Given assumptions about raw I/O performance and
knowledge of the container size used to generate the
speed factor, an estimate of absolute system performance
can be generated from the speed factor. For example, un-
der the example assumptions of the previous section, one
unit of speed factor translates to 1 MB/24 ms = 41 MB/s
using standard 4 MB chunk containers.

3.2 Container capping

One way to limit chunk fragmentation and thus increase
restore speed is to limit how many containers need be
read at restore time for each section of the backup. We
can do this by capping how many old containers each
section of the recipe can refer to. In order to use fewer
old containers, we will have to give up deduplication:
instead of using a reference to an existing chunk copy
in an old container, we will have to store a duplicate
copy of that chunk in an open container and point to that
copy. Capping, unlike using the forward assembly area
method, thus trades off deduplication for faster restore
speed. This basic idea of trading off deduplication for
faster restore speed is not new; see Section 6 for earlier
uses.

Capping requires breaking up the backup stream into
sections, which we call segments. By default, we use
20 MB “fixed”-size segments, which works out to about
5000 4 KB mean-size chunks per segment. Our seg-
ments are actually slightly shorter than the stated fixed
size in order to align chunk and segment boundaries: we
end each segment one chunk before it would become too
large.

Ingestion with capping works a segment at a time;
we process each segment as follows: First, we read in
a segment’s worth of chunks to an I/O buffer. Second,
we determine which of these chunks are already stored
and in which containers. How chunks are found does
not matter for capping; one possible method might be
that of Zhu et al. [27], which uses a full chunk index on
disk combined with a Bloom filter and caching of chunk
container indexes. Note that capping requires an extra
segment-sized buffer in RAM for each stream being in-
gested.

Third, we choose up to T old containers to use (a cap-
ping level of T containers per segment size) based on
the information we have about which containers contain
which chunks of the segment. We would like to lose

186 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

as little deduplication as possible here while remaining
within our cap of T old containers per segment. Accord-
ingly, we rank order the containers by how many chunks
of the segment they contain, breaking ties in favor of
more recent containers, and choose the top T containers,
which contain the most chunks.

Finally, we compute the recipe section for the segment
and append any “new” chunks to the open container. In
doing this, old chunks found in one of the chosen T con-
tainers generate references to existing chunks as usual
but old chunks found in other containers are treated as if
they were new chunks. That is, both the later old chunks
and any new chunks are appended to the current open
container and references are made to those new copies.
Recipe and open container data is flushed to disk in a
buffered manner, with open containers usually only writ-
ten once full.

This process guarantees that the recipe for each seg-
ment refers to at most T old containers plus 1 to 5 (=
20 MB/4 MB) new containers containing “new” chunks.
Except for segments containing mostly new data such
as in initial backups, most segments refer to only one
or, in case of filling up the existing open container, two
new containers. Clearly, this caps fragmentation at the
scale of our segment size, 20 MB; as we shall see in Sec-
tion 4.4, it also reduces fragmentation and thus improves
restore performance at higher scales.

Capping level, although expressed as T containers per
S MB segment, is not really a ratio as the choice of de-
nominator (segment size) matters independent of T/S.
Levels of 20 containers per 20 MB and 40 containers
per 40 MB are not equivalent: generally the latter al-
lows more containers per 20 MB section because con-
tainers used in both of a 40 MB segment’s halves count
only once towards its cap but twice (once per half) when
20 MB segments are being used.

3.3 Forward assembly area

The restore problem for deduplicated backup streams
differs in two important ways from the virtual memory
paging problem: First, the effective unit of I/O is an en-
tire chunk container (4 MB) whereas the unit of use is
a much smaller variable-size chunk (≈4–8 KB). Second,
at the time of starting the restore we have perfect knowl-
edge of the exact sequence of chunks that will be used
thanks to the backup’s recipe.

We have devised a new restore algorithm that ex-
ploits these differences to improve performance over tra-
ditional paging algorithms like LRU. As past work has
shown [4,5,18], future knowledge of accesses can be ex-
ploited to improve both caching and prefetching. Care-
ful arrangement of data can also save space and reduce
memory copies.

hash CID length start end
0 64aeca58 51 4037 0 4036
1 3f886668 13 6772 4037 10708
2 b52bed44 47 1900 10709 12608
3 8d39de3b 13 2199 12609 14807
4 64aeca58 51 4037 14808 18844
5 c8fd7a94 28 4041 18845 22885

Table 1: Allocation of forward assembly area from
recipe. The recipe is on the left (CID = container ID, un-
realistically short hashes used, one chunk per line) and
the resulting allocation on the right.

We page in chunk containers to a single buffer but
cache chunks rather than containers to avoid keeping
around chunks that will never be used and consult the
next part of the recipe to make better decisions about
what chunks from the paged-in containers to retain. Our
algorithm uses one chunk-container–sized I/O buffer, a
large forward assembly area where the next M bytes
of the restored backup will be assembled, and a recipe
buffer big enough to hold the part of the recipe that de-
scribes the piece being assembled.

In the simplest case, we restore M -byte slices of the
backup at a time by first assembling each M -byte backup
slice in the forward assembly area and then sending it out
in a single piece. To restore a M -byte slice, we first read
in the corresponding part of the recipe into the recipe
buffer. From that recipe part, we can determine which
chunks are needed to fill which byte ranges (chunk spots)
of the forward assembly area. See Table 1 for an example
of this.

We then repeatedly find the earliest unfilled chunk spot
in the assembly area and load the corresponding con-
tainer into our I/O buffer then fill all parts of the assembly
area that need chunks from that container. For table 1,
this results in loading container 51, filling chunk spots 0
and 4 with the same data (note duplicated chunk); load-
ing container 13, filling spots 1 and 3; loading container
47, filling spot 2; and finally loading container 28 and
filling spot 5.

With this method, we need load each container only
once per M -byte slice and do not keep around chunks
that will not be needed during this slice, unlike with
container caching. We do waste a small amount of
space when chunks occur multiple times (e.g., chunk
64aeca58 above), however. This could be avoided at the
cost of more complicated bookkeeping and extra mem-
ory copies. Note that our method handles variable-size
chunks well, without requiring padding or complicated
memory allocation schemes that waste memory due to
memory fragmentation.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 187

In addition to the simple version described above,
which we call fixed, we also consider a variant, rolling,
where we use a ring buffer for the forward assembly area.
Here, after we have finished with each container, we send
out the continuous filled-in part at the (logical) start of
the forward assembly area and then rotate the ring buffer
to put that now unused space at the end of the forward
assembly area. In the example, we would send out 0–
4036 then make chunk spot 1 (old offset 4037) the start
of the ring buffer, adding 4037 bytes to the end of the
ring buffer, allowing the allocation of further chunks. By
incrementally loading, filling, sending, rotating, and al-
locating new chunk spots, we can use our memory more
efficiently and ensure that we need load each container at
most once every M bytes, no matter where slice bound-
aries would have been. By contrast, the non-rotating
variant requires reloading containers whose uses, while
nearby, span a slice boundary.

4 Experimental Results

In order to test our approach, we modified one of our
deduplication simulators. We apply it to two primary
data sets and report on deduplication, fragmentation and
restore performance under various caching strategies,
and the effects of capping and container size.

4.1 Simulator
The simulator, a 9,000 line C++ program, is capable of
simulating many different modes and styles of dedupli-
cation. Here, we have set it to simulate a system with a
full chunk index that maps the hashes of stored chunks
to the chunk containers they occur in. In the absence of
capping, this allows the system to achieve so-called per-
fect deduplication where no chunk is ever duplicated.

Capping when enabled is done as described in sec-
tion 3.2 using 20 MB fixed-size segments by default.
Using it, duplicate chunks are intentionally sometimes
stored and the full chunk index is updated to point to the
most recent copy of each chunk. When a chunk is dedu-
plicated, the resulting backup recipe points to the partic-
ular copy of that chunk that was found via the index.

Except when we say otherwise, we are using 4 MB
chunk containers per Zhu et al.; a chunk container be-
comes full when adding the next chunk would put it over
the maximum container size. Thus, in the absence of
deletion almost all chunk containers will be essentially
the same size, namely 4 MB.

We simulate deletion of backups by removing their
recipes and the chunk copies that are now garbage (e.g.,
no longer pointed to by any backup recipe) from their
containers. We do not simulate the merging of now-too-
small containers after deletion or other kinds of house-

keeping that involve moving chunks between containers
or merging duplicate copies of a chunk. When a chunk
pointed to by the index is garbage collected, the entry
in the index for that hash is removed even if another
copy of that chunk exists. We do this even though it
can cause loss of deduplication because we expect this
to occur rarely—usually older copies are deleted first—
and because avoiding it in a real system is likely to be
expensive.

The simulator produces various statistics. In this pa-
per, we are primarily concerned with the (estimated) cu-
mulative deduplication factor (total raw/total dedupli-
cated = sum of every non-deleted input chunk’s length
/ sum of every currently-stored chunk copy’s length) and
a measure of restore speed, speed factor = 1/contain-
ers read per MB (restored). Note that the estimated cu-
mulative deduplication factor does not take into account
metadata overhead (causing it to overestimate) or local
compression of chunks (causing it to underestimate total
compaction). In general, we ignore local compression
for this paper; thus, for example, our maximum container
size limit is a bound on the sum of the uncompressed
lengths of the chunks contained in a container.

4.2 Data sets

We report results for two main data sets. The first data
set, which we call Workgroup, is created from a semi-
regular series of backups of the desktop PCs of a group
of 20 engineers taken over a period of four months. The
backups were taken using uncompressed tar. Although
the original collection included only an initial full and
later weekday incrementals for each machine, we have
generated synthetic fulls at the end of each week for
which incrementals are available by applying that week’s
incrementals to the last full. The synthetic fulls replace
the last incremental for their week; in this way, we sim-
ulate a more typical daily incremental and weekly full
backup schedule. We are unable to simulate file deletions
because this information is missing from the collection.

There are 154 fulls and 392 incrementals in this 3.8 TB
collection, with the fulls ranging from 3 GB to 56 GB,
with a mean size of 21 GB. Note that because these ma-
chines were only powered up during workdays and be-
cause the synthetic fulls replace the last day of the week’s
back up, the ratio of incrementals to fulls (2.5) is lower
than would be the case for a server (6 or 7). We generate
the Workgroup data set from these backups by grouping
backups taken on the same day into a single backup. This
grouping results in 91 “system-wide” backups; we group
the original backups this way so that tape cycling (see
below) treats backups taken the same day as a unit. The
data is chunked into variable-size chunks with mean size
4 KB using the TTTD chunking algorithm [6].

188 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

0
0.5

1
1.5

2
2.5

3
3.5

4

sp
ee

d
fa

ct
or

RAM used (MB)

1..20
21..40
41..60
61..80
72..91

(a) Workgroup-cycle30

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

sp
ee

d
fa

ct
or

RAM used (MB)

71.. 90
161..180
251..270
341..360
461..480

(b) 2year-cycle30

Figure 2: Speed as LRU cache size varies for two data sets. Each line shows the average speed of restoring the 20
backups whose numbers are given on the right. No capping was used.

The second data set, which we call 2year, is a syn-
thetic data set provided to us by HP Storage that they
have designed to mimic the important characteristics
of the data from a past customer escalation involving
high fragmentation. This fragmentation stress test is
known to produce problematic fragmentation and is used
by HP Storage to test their products. It starts from
a 10 GB filesystem snapshot and then each simulated
weekday randomly selects 2% of the files and synthet-
ically changes 10% of each selected file by seeking to a
random offset and overwriting that many bytes; it also
adds 200 MB of original files each simulated weekday.
During each simulated week, one full backup and four
incremental backups, one for each other weekday, are
taken via uncompressed tar for a total of 480 backups
covering 96 simulated weeks (1.9 years). These back-
ups are chunked via TTTD using a slightly smaller mean
chunk size of 3850 bytes.1

These data sets make for a good test of the ability to
handle fragmentation because they contain the features
known to cause greater fragmentation: within backup
sharing, incrementals, and most especially a great num-
ber of backups. Because these data sets consist of so
many backups, it would be unrealistic to simply simu-
late ingesting one after another—even with deduplica-
tion, companies can only afford to keep a limited number
of backups on disk in practice.

Instead, we simulate deleting backups according to a
schedule, cycle30, where backups are kept for only 30
“days”. More precisely, we delete the n−30th backup
before ingesting the nth backup. Although we only

1HP Storage uses this chunking size because chunking can be done
faster when the TTTD derived divisors work out to be powers of two,
avoiding the need for division.

report on this schedule, we have experimented with
other kinds of schedules, including grandfather-father-
son [24]. We find that the exact schedule for deleting
backups does not particularly affect our results other than
to change the overall deduplication factor.

4.3 Baseline (LRU)

As with any use of caching, we expect restore perfor-
mance to improve as cache size increases. Figure 2
shows how restore performance for our baseline sys-
tem (i.e., LRU caching, no capping) varies under LRU
caching for a variety of cache sizes for selected 20
backup periods. We show averages of 20 backups here
and elsewhere to smooth out the effects of incrementals
versus fulls.

You will immediately see that restore speed varies by
a huge amount as we change our cache size: switch-
ing from 32 MB to 8 GB for Workgroup-cycle30 in-
creases restore speed by 5–16X (more as more back-
ups accumulate) and switching from 32 MB to 8 GB
for 2year-cycle30 similarly increases restore speed by 9–
10X. Even a smaller change like from 128 MB to 1 GB
(8X) increases restore speed by 1.9–3.5X (Workgroup-
cycle30) or 4.7–2.2X (2year-cycle30).

Notice that restore speed generally decreases as back-
ups accumulate due to increased fragmentation no matter
what cache size is used. How fragmentation increases
over time can be seen more clearly in Figures 1 and 3,
which plot a measure of fragmentation, containers read
per MB restored, as more backups accumulate for four
different values of LRU cache size. Fragmentation ap-
pears to increase linearly over time: applying linear re-
gression gives R2 values of over 0.96 for 2year-cycle30

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 189

0

0.5

1

1.5

2

2.5

3

3.5

4

1 11 21 31 41 51 61 71 81 91

co
nt

ai
ne

rs
 re

ad
 p

er
 M

B
re

st
or

ed

backup number

128 MB
256 MB
512 MB
 1 GB

Figure 3: Fragmentation over time for Workgroup-
cycle30 for 4 different LRU cache sizes. Shown is a sim-
ple 20 backup moving average; no capping was used.

and 0.98, 0.98, 0.90, and 0.86 for Workgroup-cycle30.
As this measure of fragmentation is the inverse of our
speed proxy, this means that, given enough backups,
doubling the total number of backups halves the final
backup restore speed.

If you look carefully at Figure 2, you will see that the
shapes of the speed versus cache size curves are differ-
ent for the two data sets. This is because their levels
of fragmentation differ differently at each scale, not just
overall. In hindsight, this is unsurprising when we con-
sider the analogy to memory caches and memory traces:
a memory trace does not have a single “locality” value,
but rather has a locality value for each possible cache
size. Knowing how fast a memory trace executes with a
cache of one size does not tell you much about how fast
it will run at a substantially different cache size unless
the working set fits in the first size.

Put another way, fragmentation like memory locality
is not a scalar value but rather a one-dimensional curve.
Changes that affect fragmentation like capping may af-
fect different scales differently; indeed, it is conceivable
that some methods of capping might improve fragmen-
tation at one scale while hurting it at another scale. Ac-
cordingly, we will show results at a variety of cache sizes.

4.4 Capping
Capping trades off deduplication for reduced fragmenta-
tion and hence restore speed. How useful this trade-off
is in practice depends greatly on the shape of the trade-
off curve; ideally, giving up only a little deduplication
will give us a great deal of speed. Figure 4 shows this
trade-off curve for our data sets.

To make this trade-off clearer, in Figure 5 we have
plotted for each of several LRU cache sizes how giving
up a certain percentage of cumulative deduplication fac-
tor via capping increases restore speed. For example, us-
ing a 128 MB cache size with Workgroup-cycle30, we

can give up 2% of our deduplication in return for a 4.0X
speedup or we could give up 8% in return for a 6.4X
speed up. The relative improvement of capping when us-
ing a 1 GB cache is less: 2% gives us only 1.7X and 8%
only 2.3X.

With 2year-cycle30, we need to give up more dedu-
plication to get sizable speedups. For example with
128 MB, giving up 8% yields only 1.7X but 15% yields
3.9X and 23% yields 8.8X. Using 1 GB, 8% yields 3.1X,
15% yields 4.2X, and 23% yields 5.0X. These results
demonstrate that it is possible to give up a relatively
small percentage of deduplication in practice and get
quite substantial speedups.

How does capping affect fragmentation over time?
Figure 6 shows that capping alters the rate at which frag-
mentation accrues but does not stop it from accumulat-
ing. The more capping applied, the slower fragmentation
grows. For example, with 2year-cycle30 and 128 MB
LRU, fragmentation grows 11X over 480 backups with-
out capping, but only 6X with cap 90 (90 containers per
20 MB segment), 3X with cap 50, 1.8X with cap 20,
and 1.4X with cap 10. Results for other cache sizes are
broadly similar, but with differing amounts of vertical
spread where higher cache sizes produce less spread.

Our segment size sets the scale of fragmentation we
are capping; Figure 7 shows what happens to the cap-
ping trade-off curve as we increase this parameter for
two LRU cache sizes. At 1 GB, the curve shifts right as
deduplication decreases, allowing increased speeds for a
given deduplication loss. We estimate that by increas-
ing our segment size to 160 MB we could increase re-
store speed at 1 GB by 15% (Workgroup-cycle30) or
50% (2year-cycle30) while holding deduplication loss
constant.

At 128 MB, by contrast, increasing the segment size
can produce small or negative speed increases, especially
for low levels of deduplication loss or large segment
sizes. 40 MB segments do not produce better results than
20 MB megabytes for 2year-cycle30 until deduplication
loss exceeds 20%, for example. We are still investigat-
ing, but we believe these effects come from capping at
segment size S being at a scale equivalent to an forward
assembly area of S and thus, as we shall see, a much
higher LRU cache size. Capping at a scale substantially
above the scale being restored at is unlikely to be partic-
ularly effective.

4.5 Assembly

How does our new forward-assembly-area restore
method compare to the state-of-the-art? Figure 8 com-
pares it to our baseline system (LRU, no capping).
Shown are the two different forward assembly area vari-
ants described in Section 3.3: fixed alternates filling

190 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

6
6.2
6.4
6.6
6.8

7
7.2
7.4
7.6
7.8

8

0 1 2 3 4 cu
m

ul
at

iv
e

de
du

pl
ic

at
io

n
fa

ct
or

speed factor

 128 MB
 256 MB
 512 MB
1024 MB

(a) Workgroup-cycle30

0
1
2
3
4
5
6
7
8
9

0 0.5 1 1.5 2 cu
m

ul
at

iv
e

de
du

pl
ic

at
io

n
fa

ct
or

speed factor

 128 MB
 256 MB
 512 MB
1024 MB

(b) 2year-cycle30

Figure 4: Deduplication versus speed as capping level and cache size vary for two data sets. Deduplication and
speed values are the average of the last 20 backups using LRU caching with the shown cache size. Each curve shows
varying capping levels of from left to right: none, 250, 200, 150, 130, 110, 90, 70, 50, 40, 30, 20, 15, and 10 containers
per 20 MB segment. Y-axis of Workgroup-cycle30 starts at 6 to provide more detail.

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8

re
la

tiv
e

lo
ss

 o
f c

um
ul

at
iv

e
de

du
pl

ic
at

io
n

fa
ct

or

relative speed gain

 128 MB
 256 MB
 512 MB
1024 MB

(a) Workgroup-cycle30

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10

re
la

tiv
e

lo
ss

 o
f c

um
ul

at
iv

e
de

du
pl

ic
at

io
n

fa
ct

or

relative speed gain

 128 MB
 256 MB
 512 MB
1024 MB

(b) 2year-cycle30

Figure 5: Relative deduplication loss versus relative speed gain as a result of capping for selected capping levels
and cache sizes for two data sets. Deduplication and speed factor are calculated using the average of the last 20
backups using LRU caching with the shown cache size. Each curve shows varying capping levels of from left to right:
none, 250, 200, 150, 130, 110, 90, 70, 50, 40, 30, 20, 15, and 10 containers per 20 MB segment.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 11 21 31 41 51 61 71 81 91 co
nt

ai
ne

rs
 re

ad
 p

er
 M

B
re

st
or

ed

backup number

none
cap 90
cap 70
cap 50
cap 40
cap 30
cap 20
cap 15
cap 10

(a) Workgroup-cycle30

0

2

4

6

8

10

12

1 51 101 151 201 251 301 351 401 451 co
nt

ai
ne

rs
 re

ad
 p

er
 M

B
re

st
or

ed

backup number

none
cap 200
cap 150
cap 130
cap 110
cap 90
cap 70
cap 50
cap 40
cap 30
cap 20
cap 15
cap 10

(b) 2year-cycle30

Figure 6: Effect of varying capping level on fragmentation over time for two data sets. Shown is a simple 20 backup
moving average using 128 MB LRU caching and 20 MB segments. Cap T denotes a capping level of T containers per
20 MB segment.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 191

6
6.2
6.4
6.6
6.8

7
7.2
7.4
7.6
7.8

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

cu
m

ul
at

iv
e

de
du

pl
ic

at
io

n
fa

ct
or

speed factor

128 MB $; 20 MB seg.
128 MB $; 40 MB seg.
128 MB $; 80 MB seg.
128 MB $; 160 MB seg.
 1 GB $; 20 MB seg.
 1 GB $; 40 MB seg.
 1 GB $; 80 MB seg.
 1 GB $; 160 MB seg.

(a) Workgroup-cycle30

6

6.5

7

7.5

8

8.5

9

0 0.5 1 1.5 2 2.5

cu
m

ul
at

iv
e

de
du

pl
ic

at
io

n
fa

ct
or

speed factor

128 MB $; 20 MB seg.
128 MB $; 40 MB seg.
128 MB $; 80 MB seg.
128 MB $; 160 MB seg.
 1 GB $; 20 MB seg.
 1 GB $; 40 MB seg.
 1 GB $; 80 MB seg.
 1 GB $; 160 MB seg.

(b) 2year-cycle30

Figure 7: Effect of varying segment size on deduplication and speed for selected capping ratios for two data sets
for two sizes of LRU caching and 4 sizes of segments. Deduplication and speed factors are the average of the last
20 backups. Each curve shows varying capping ratios (capping level as a ratio) of from left to right: infinity, 150/20,
130/20, 110/20, 90/20, 70/20, 50/20, 40/20, 30/20, 20/20, 15/20, 10/20, 5/20, and 2/20 containers per MB. Y-axes start
at 6 to provide more detail.

0

0.5

1

1.5

2

2.5

3

3.5

sp
ee

d
fa

ct
or

RAM used (MB)

rolling
fixed
LRU

(a) Workgroup-cycle30

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sp
ee

d
fa

ct
or

RAM used (MB)

rolling
fixed
LRU

(b) 2year-cycle30

Figure 8: Speed as RAM usage varies for 3 restore methods for two data sets. Shown is the average speed for the
last 20 backups. No capping was used.

6
6.2
6.4
6.6
6.8

7
7.2
7.4
7.6
7.8

8

0 1 2 3 4

cu
m

ul
at

iv
e

de
du

pl
ic

at
io

n
fa

ct
or

speed factor

128 MB LRU
128 MB rolling
 1 GB LRU
 1 GB rolling

(a) Workgroup-cycle30

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2

cu
m

ul
at

iv
e

de
du

pl
ic

at
io

n
fa

ct
or

speed factor

128 MB LRU
128 MB rolling
 1 GB LRU
 1 GB rolling

(b) 2year-cycle30

Figure 9: Comparing deduplication and speed as capping level varies between LRU and assembly for two cache
sizes and two data sets. Deduplication and speed values are the average of the last 20 backups. Each curve shows
varying capping levels of from left to right: none, 250, 200, 150, 130, 110, 90, 70, 50, 40, 30, 20, 15, and 10 containers
per 20 MB segment. Y-axis of Workgroup-cycle30 starts at 6 to provide more detail.

192 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

up the entire forward assembly area then sending it out
whereas rolling sends out data incrementally using a ring
buffer. As expected, because of its more efficient mem-
ory usage, rolling outperforms fixed by 7–23%, with
greater improvement at smaller RAM sizes.

RAM used for LRU is simply the number of container
slots in the cache times the container size (4 MB). For
the forward assembly area methods, it is the size of the
forward assembly area. In neither case do we count the
chunk container I/O buffer (4 MB) or the recipe buffer
(≈1–2% of the forward assembly area size).

The assembly methods produce substantial speedups
over LRU for sub-4 GB RAM sizes. If we com-
pare over what we regard as practical2 RAM sizes
per stream, namely 128 MB to 1 GB, rolling is 1.2–
2.7X (Workgroup-cycle30) or 3.3–4.3X (2year-cycle30)
faster. The above results assume no local compression
of chunks or chunk containers; modifying LRU to use
such compression may make it more competitive. If we
generously assume compression reduces LRU RAM us-
age by 2, then for our practical RAM usages, rolling
is 1.03–1.56X (Workgroup-cycle30) or 1.4–3.4X (2year-
cycle30) faster.

At very high RAM sizes, LRU catches up with
(rolling) assembly, presumably because pretty much ev-
erything cacheable has been cached at that point. It is
likely that with larger individual backups LRU will not
catch up to rolling until still higher RAM sizes. LRU
outperforms fixed when everything fits in cache because
fixed effectively evicts everything at the end of a slice
and then has to reload it again.

4.6 Capping and assembly
Combining capping with assembly can produce even big-
ger speedups as Figure 9 shows. The benefit of assembly
is greatest for smaller amounts of capping (i.e., allowing
a larger number of containers) and tapers off as capping
increases. We believe this is because increased capping
reduces fragmentation and hence the needed “working
set” size; although assembly makes more effective use of
its memory than LRU, given enough memory both can
hold the working set.

4.7 Container size
We have been using standard-size chunk containers of
4 MB per Zhu et al. [27]. If a system can read an ex-
tra 4 MB faster than it can start reading a new container
then in theory it may pay to use a larger container size.
This turns out to be largely false in practice when using

2Remember that these systems may have hundreds of concurrent
streams in normal operation (often including restoring backups in order
to write them to tape) so even 128 MB per stream adds up quickly.

0
2
4
6
8

10
12
14
16
18
20

2 4 8 16 32 64

co
nt

ai
ne

rs
 re

ad
 p

er
 M

B
re

st
or

ed

container size (MB)

128 MB
256 MB
512 MB
 1 GB

Figure 10: Containers read using LRU as container
size is varied for Workgroup-cycle30 for 4 cache sizes.
Containers read per MB restored is the average of the last
20 backups; no capping was used.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8 16 32 64

co
nt

ai
ne

rs
 re

ad
 p

er
 M

B
re

st
or

ed

container size (MB)

128 MB
256 MB
512 MB
 1 GB

Figure 11: Containers read using assembly (rolling)
as container size is varied for Workgroup-cycle30 for
4 cache sizes. Containers read per MB restored is the
average of the last 20 backups; no capping was used.

LRU, however, because LRU cache performance quickly
drops as we increase the container size: fewer large con-
tainers fit in the same size cache causing a higher miss
rate, which in turn causes so many extra container reads
that the savings from the data fitting in fewer containers
is swamped by the cost of the extra reads. As an example,
Figure 10 shows this for Workgroup-cycle30.

Assembly, by contrast does not suffer from this prob-
lem because it keeps individual chunks not entire chunk
containers. This can be seen in Figure 11 where increas-
ing the container size results in strictly fewer containers
read per MB of restored data. However, reading larger
containers takes longer so the optimal container size for
restore depends on the ratio of cost between opening a
container and sequentially reading a MB. For example, if
we assume opening a container takes 20 ms (2 seeks @
10 ms each) and reading 1 MB takes 1 ms (1 RAID group
with 10 data drives @ 100 MB/s each) then we are in-
different between opening another container and reading
another 20 MB. Under these assumptions if we ignore

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 193

0
10
20
30
40
50
60
70
80
90

2 4 8 16 32 64

es
ti

m
at

ed
 s

pe
ed

 (M
B/

s)

container size (MB)

 1 GB ASM
512 MB ASM
256 MB ASM
128 MB ASM
 1 GB LRU
512 MB LRU
256 MB LRU
128 MB LRU

Figure 12: Estimated speed for a sample system as
container size is varied for Workgroup-cycle30 for 4
cache sizes and assembly (rolling) and caching. Based
on a system that reads at 1000 MB/s and opens a con-
tainer in 20 ms, and the average of the last 20 backups;
no capping was used and all containers were assumed to
be full.

other considerations like ingest or deletion performance
and assume all containers are full size, the optimal con-
tainer size for restore without capping under assembly
(rolling) is 8 MB for the 128 MB cache size and 16 MB
for the 1 GB cache size (see Figure 12).

4.8 Ingest performance of capping
We did not simulate the I/O performance of backup in-
gestion but our experience with these systems is that the
dominant cost of ingestion is reading chunk container in-
dexes and/or on-disk full chunk index lookups. This in-
volves a lot of reads per MB ingested, which are effec-
tively random accesses, while writing out new containers
is sequential. Thus, we do not expect the extra work of
writing out a small amount of extra duplicates during in-
gestion to noticeably affect ingestion performance.

The number of index reads per MB ingested is pro-
portional for most of these systems to the fragmentation
of the backup being ingested before capping is applied.
This is because any capping is applied after (provisional)
deduplication is done to determine where chunks are al-
ready stored. Essentially, we need to load a chunk con-
tainer index in order to determine if it is worth dedupli-
cating against it. Capping may nonetheless improve in-
gest speed because it indirectly reduces the pre-capping
fragmentation of the backup being ingested. This is be-
cause this fragmentation depends in part on the fragmen-
tation of the previously stored backups, which capping
does reduce.

Capping has been implemented in HP Storage’s
StoreOnceTM backup products, which are based on
sparse indexing [12]. Sparse indexing deduplicates a seg-
ment at a time, deduplicating it against only a limited

number of places found using sampling, and already has
to cope with occasional extra stored copies of chunks due
to the limited number of places that are searched. Cap-
ping, thus, fits easily into a sparse indexing system.

As originally described, sparse indexing indexes and
searches manifests (recipe pieces). While sparse index-
ing’s limitation on the number of places searched during
ingest protects it from fragmentation during ingest (the
number of places searched per MB is capped, guaran-
teeing a minimum ingest speed), it provides limited pro-
tection against fragmentation during restore. This is be-
cause each manifest may refer to many different contain-
ers and thus the segment may be deduplicated against far
more containers than the limitation, each of which may
have to be accessed during restore.

Given that with capping we are going to limit the num-
ber of containers we use anyway, it turns out to be more
efficient to modify sparse indexing to index and search
container indexes directly. That is, we look up samples
of the segment to be deduplicated in a sparse index that
maps them to the containers that contain them; from this
information alone we can directly choose the top T con-
tainers to use (i.e., pick those containing the most sam-
ples). This efficiently limits the number of containers
that must be accessed both during restore and ingestion,
greatly improving both restore and ingest performance.

5 Future Work

Our current capping mechanism makes its decisions on
a purely local basis, looking only at the current seg-
ment; while simple, this sometimes leads to suboptimal
choices. We are investigating two methods of extend-
ing its context. First, we are exploring adaptive capping
where the current capping level is adjusted at the start of
each segment based on the actual number of containers
used by recent segments so as to cap a running average
of containers used rather than the number of containers
used by the current segment. This produces better re-
sults with unevenly fragmented backups where the un-
used container access capacity from lightly fragmented
spots can be used to improve deduplication of highly
fragmented spots.

Second, we are investigating remembering at ingest
time the containers that we have used for recent segments
and not counting the use of these containers towards the
cap. Such containers almost certainly will be in the cache
at restore time given a reasonable cache size, and thus
do not affect fragmentation at that scale. We hope this
will give us the same performance as using a larger seg-
ment size without actually needing to increase our seg-
ment buffer space. We also plan to investigate the effect
of merging small containers after deletion.

194 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

6 Related Work

Measuring fragmentation. Chunk fragmentation level
(CFL) has been proposed as an effective indicator of re-
store performance [16, 17]. In our terms (generalizing
to the non-LRU case), it is equal to the maximum3 of
our speed factor divided by the container size and 1.
This ensures a maximum value of 1 for backups with
high internal duplication, which otherwise would have
values above 1. CFL’s creators claim they do this be-
cause “the read performance is high enough” in that case
but this makes CFL unable to predict the performance of
such streams. For cases where the maximum is not hit,
CFL like our speed factor is proportional to the actual re-
store speed if container size is held constant. If container
size varies, its accuracy falls because it assumes the cost
of reading a container is proportional to its size, which
is only approximately true for typical systems and con-
tainer sizes because of the substantial cost of opening a
container relative to the cost of reading that container.

Trading off deduplication. A number of systems also
trade off deduplication for lower chunk fragmentation
and improved read performance. The earliest described,
iDedup, does so in the context of primary storage dedu-
plication [20]. Chunks there are ordinary fixed-sized
filesystem blocks that may be shared rather than variable-
sized chunks stored in container files. To reduce frag-
mentation, iDedup deduplicates a sequence of duplicate
blocks only when its corresponding already stored blocks
are sequentially laid out on disk and exceed a minimum
length threshold. This limits how often seeks must be
done when sequentially reading back data.

Nam et al. [17] suggest using a similar approach for
backup systems: while a calculated fragmentation level
is too high, only deduplicate sequences of duplicate
chunks (ignoring any intermixed non-duplicate chunks)
stored in the same chunk container if the sequence is long
enough. In the presence of caching, this is suboptimal
because it penalizes switching back to a recently used
container. For example, it fails to deduplicate two siz-
able runs of duplicate chunks, each from a different con-
tainer, if they are intermixed rather than occur one after
the other. Capping and CBR (below) do not make this
mistake because they ignore the order of chunks within a
segment/context. Nam et al. do not report on how much
deduplication is lost under their approach in order to re-
duce fragmentation by a given amount.

Context-based rewriting (CBR) [10] is the most simi-
lar to Capping in spirit. Modulo differences due to CBR
assuming a single continuous storage region rather than
discrete chunk containers, CBR essentially amounts to

3The formula in the paper [17] says min but the accompanying text
and figure 4 clearly indicate that max was intended.

deduplicating a segment against a container if and only
if it contains at least a minimum number of chunks from
that segment. By cleverly adjusting this minimum over
time, CBR limits the overall amount of deduplication
lost to a small value (e.g., 5%). This comes at the cost
of potentially unbounded fragmentation and restore time
slowdown. Capping, by contrast, is designed to make it
easy to guarantee a minimum restore speed—just set the
capping level based on how many containers can be read
per second—at the cost of potentially arbitrary dedupli-
cation loss. We believe that capping’s trade-off is bet-
ter because it is more important in practice for the lat-
est backup to be able to be restored in a predictably-fast
manner then to be able to store a few more old backups
on the system. CBR has been only cursorily evaluated to
date, being tested against only one extremely short data
set with any real fragmentation (2X slowdown over 14
backups) [10].

Caching. Previous studies of chunk fragmentation in
backup systems [10,16,17,23] have all used LRU caches.
Wallace et al. [23], a study of backup workloads in pro-
duction systems, reports the hit ratio for a read cache
when restoring final backups, from which fragmenta-
tion can be estimated, for a wide range of cache sizes.
Their numbers also show that increasing cache size sub-
stantially decreases measured fragmentation—in their
case well into the terabyte cache size range. In addi-
tion to caching entire containers, they consider caching
compression regions (≈ 128 KB regions) or individual
chunks. As expected, these produce substantially worse
hit rates at all cache sizes and thus poorer restore perfor-
mance.

Belady [4] shows that it is possible to construct a
provably-optimal paging algorithm given perfect knowl-
edge of future accesses. Cao et al. [5] consider how to
integrate prefetching and caching of blocks in the pres-
ence of perfect future knowledge, giving four rules that
an optimal such system must follow. They do not ap-
ply directly to our system because it does not use fixed-
size blocks, but suggest we are suboptimal if memory
copies are free because that would allow storing more
chunks by using a sparse representation for the forward
assembly area. Nam et al. [16] point out that information
about future chunks needed is available in advance when
restoring backups.

Patterson et al. [18] show how to prefetch and cache
fixed-size file blocks in the presence of imperfect future
knowledge provided by applications in the form of hints,
showing how to dynamically allocate resources between
hinted and unhinted accesses. Unlike us, they consider
multiple outstanding prefetch requests, which improves
performance and could be added to our method at the
cost of more container buffers.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 195

Other work. Backlog [13] is an efficient implementa-
tion of metadata, specifically back-reference pointers, to
ease defragmentation-like data re-organization tasks in
write-anywhere file systems such as WAFL [8], Btrfs [1],
and ZFS [2]. Cumulus [22] is a file backup system that
uses large blocks so that many files can be packed into
a block to reduce unused storage space. A cleaner min-
imizes fragmentation that occurs when files are deleted.
SORT [21] suggests that taking ownership information
into account when making routing decisions in multi-
node deduplication systems may improve restore perfor-
mance with little loss of deduplication.

Almost all file systems provide defragmentation util-
ities whose objective is to move objects so as to max-
imize contiguous free space [25]. Various heuristics
have been proposed for grouping together, on disk, all
data that are expected to be accessed together [7, 11, 14].
Locality-Improving Storage (ALIS) [9] is a storage sys-
tem that clusters together frequently accessed data blocks
while largely preserving the original block sequence
to reduce random I/Os and increase read performance.
Yu et al. [26] propose introducing several copies of data
and then using metrics such as expected access time dy-
namically to reduce seek and rotational delay.

7 Conclusions

Poor restore performance due to chunk fragmentation
can be a serious problem for inline, chunk-based dedu-
plicating backup systems: if nothing is done, restore per-
formance can slow down orders of magnitude over the
life of a system.

Chunk fragmentation, like memory locality, is not a
scalar value but rather a curve: one data set may have
much more fragmentation at a lower scale than another
yet have the same level of fragmentation at a higher scale.
Because restore speed depends on the fragmentation at
the scale of caching used and chunk fragmentation de-
creases as the scale it is measured at increases, restore
performance can be increased by using more cache mem-
ory. Although expensive, adding more RAM continues
to produce substantial improvements for real data sets
well through the point where 8 GB of RAM is being used
per stream.

The kind of caching matters as well. Switching from
LRU to our new forward assembly area method pro-
vides substantially faster restore performance for the
same RAM budget for practical RAM sizes (i.e., 128 MB
to 1 GB). This has essentially no downside and demon-
strates the power of using the perfect information about
future accesses provided by recipes to keep only chunks
that we are sure are going to be used in the near future.
Because it keeps only these chunks, the forward assem-
bly area method is able to take advantage of larger chunk

containers than LRU, which may provide better perfor-
mance on some systems.

Restore performance can also be improved by decreas-
ing chunk fragmentation itself. Our container capping
accomplishes this at the cost of decreased deduplication
by selectively duplicating chunks to avoid accessing con-
tainers that we only need a small number of chunks from.
This can result in substantial speedups for real data sets
while giving up only a small amount of deduplication.
Container capping is an ingest-time approach and does
not require rearranging chunks later.

Given our results, we recommend that system design-
ers use all available RAM for restoring a stream (includ-
ing operating system cache space) for a single large for-
ward assembly area and associated buffers. If the number
of streams being restored at a time can vary, we recom-
mend using more RAM per stream when fewer streams
are being restored. Unless deduplication is at a great pre-
mium, at least a small amount of capping should be em-
ployed.

Acknowledgments

We would like to thank our shepherd, Fred Douglis, and
the anonymous referees for their many useful sugges-
tions.

References

[1] Btrfs project wiki. http://btrfs.wiki.kernel.org.
Viewed February 10, 2012.

[2] Oracle Solaris 11 ZFS technology. http://
opensolaris.org/os/community/zfs/. Viewed Febru-
ary 10, 2012.

[3] ASARO, T., AND BIGGAR, H. Data De-duplication
and Disk-to-Disk Backup Systems: Technical and
Business Considerations. The Enterprise Strategy
Group (July 2007).

[4] BELADY, L. A. A study of replacement algorithms
for virtual storage computers. IBM Systems Journal
5, 2 (1966), 78–101.

[5] CAO, P., FELTEN, E. W., KARLIN, A. R., AND
LI, K. A study of integrated prefetching and
caching strategies. In Proceedings of the Joint In-
ternational Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS) (May
1995), pp. 188–197.

[6] ESHGHI, K. A framework for analyzing and im-
proving content-based chunking algorithms. Tech.
Rep. HPL-2005-30(R.1), Hewlett Packard Labora-
tories, Palo Alto, 2005.

196 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

[7] GANGER, G. R., AND KAASHOEK, M. F. Em-
bedded inodes and explicit grouping: exploiting
disk bandwidth for small files. In Proceedings
of the 1997 USENIX Annual Technical Conference
(Berkeley, CA, USA, 1997), USENIX Association,
pp. 1–17.

[8] HITZ, D., LAU, J., AND MALCOLM, M. File sys-
tem design for an NFS file server appliance. In
Proceedings of the Winter 1994 USENIX Technical
Conference (Berkeley, CA, USA, 1994), USENIX
Association, pp. 235–246.

[9] HSU, W. W., SMITH, A. J., AND YOUNG, H. C.
The automatic improvement of locality in storage
systems. ACM Transactions on Computer Systems
23, 4 (2005), 424–473.

[10] KACZMARCZYK, M., BARCZYNSKI, M., KIL-
IAN, W., AND DUBNICKI, C. Reducing impact of
data fragmentation caused by in-line deduplication.
In Proceedings of the 5th Annual International Sys-
tems and Storage Conference (SYSTOR ’12) (Haifa,
Israel, June 2012), ACM, pp. 11:1–11:12.

[11] KROEGER, T. M., AND LONG, D. D. E. Pre-
dicting file system actions from prior events. In
Proceedings of the 1996 USENIX Annual Technical
Conference (Berkeley, CA, USA, 1996), USENIX
Association, pp. 319–328.

[12] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D.,
DEOLALIKAR, V., TREZISE, G., AND CAMP-
BELL, P. Sparse Indexing: Large scale, inline
deduplication using sampling and locality. In Pro-
ceedings of the Eighth USENIX Conference on File
and Storage Technologies (FAST ’09) (Feb. 2009),
pp. 111–123.

[13] MACKO, P., SELTZER, M., AND SMITH, K. A.
Tracking back references in a write-anywhere file
system. In Proceedings of the 8th USENIX Confer-
ence on File and Storage Technologies (FAST ’10)
(Feb. 2010), pp. 15–28.

[14] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,
AND FABRY, R. S. A fast file system for UNIX.
ACM Transactions on Computer Systems 2, 3
(1984), 181–197.

[15] MUTHITACHAROEN, A., CHEN, B., AND
MAZIÈRES, D. A low-bandwidth network file
system. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01)
(Banff, Alberta, Canada, October 2001), ACM
Press, pp. 174–187.

[16] NAM, Y., LU, G., PARK, N., XIAO, W., AND DU,
D. H. Chunk Fragmentation Level: An effective
indicator for read performance degradation in dedu-
plication storage. In IEEE 13th International Sym-
posium on High Performance Computing and Com-
munications (HPCC ’11) (Banff, AB, Sept. 2011),
pp. 581–586.

[17] NAM, Y. J., PARK, D., AND DU, D. H. C. As-
suring demanded read performance of data dedu-
plication storage with backup datasets. In Proceed-
ings of the 20th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2012)
(Washington DC, Aug. 2012).

[18] PATTERSON, R. H., GIBSON, G. A., GINTING,
E., STODOLSKY, D., AND ZELENKA, J. Informed
prefetching and caching. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles (Dec. 1995), ACM Press, pp. 79–95.

[19] QUINLAN, S., AND DORWARD, S. Venti: A new
approach to archival storage. In Proceedings of
the FAST 2002 Conference on File and Storage
Technologies (Monterey, CA, USA, January 2002),
USENIX Association, pp. 89–101.

[20] SRINIVASAN, K., BISSON, T., GOODSON, G.,
AND VORUGANTI, K. iDedup: Latency-aware, in-
line data deduplication for primary storage. In Pro-
ceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST ’12) (Feb. 2012),
pp. 299–312.

[21] TAN, Y., FENG, D., HUANG, F., AND YAN,
Z. SORT: A similarity-ownership based routing
scheme to improve data read performance for dedu-
plication clusters. International Journal of Ad-
vancements in Computing Technology (IJACT) 3, 9
(2011), 270–277.

[22] VRABLE, M., SAVAGE, S., AND VOELKER,
G. M. Cumulus: Filesystem backup to the cloud. In
Proceedings of the 7th USENIX Conference on File
and Storage Technologies (FAST ’09) (Feb. 2009),
pp. 225–238.

[23] WALLACE, G., DOUGLIS, F., QIAN, H., SHI-
LANE, P., SMALDONE, S., CHAMNESS, M., AND
HSU, W. Characteristics of backup workloads in
production systems. In Proceedings of the 10th
USENIX Conference on File and Storage Technolo-
gies (FAST ’12) (Feb. 2012), pp. 33–48.

[24] WIKIPEDIA. Backup rotation scheme. http://
en.wikipedia.org/wiki/Backup rotation scheme#

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 197

Grandfather-father-son backup. Viewed February
5, 2012.

[25] WIKIPEDIA. Defragmentation. http://en.wikipedia.
org/wiki/Defragmentation. Viewed February 5,
2012.

[26] YU, X., GUM, B., CHEN, Y., WANG, R. Y.,
LI, K., KRISHNAMURTHY, A., AND ANDERSON,
T. E. Trading capacity for performance in a disk
array. In Proceedings of the 4th conference on
Symposium on Operating System Design & Im-
plementation (OSDI) (Berkeley, CA, USA, 2000),
USENIX Association, pp. 243–258.

[27] ZHU, B., LI, K., AND PATTERSON, H. Avoid-
ing the disk bottleneck in the Data Domain dedu-
plication file system. In Proceedings of the 6th
USENIX Conference on File and Storage Technolo-
gies (FAST ’08) (San Jose, CA, USA, February
2008), USENIX Association, pp. 269–282.

